从不同位置的管道排出的液体量

时间:2018-07-12 21:59:32

标签: python algorithm fluid-dynamics

这可能更多是算法问题,但我是用Python编写的。

我在管道上有一组数据,这些数据会随着高度的增加而增加或减少。我的数据有两列,即沿管道的尺寸以及该尺寸的高程。我的数据集中有数万行。 (这些将是列而不是行)

度量:1、2、3、4、5、6、7、8、9、10

海拔:5、7、9、15、12、13、18、14、23、9

在此脚本中,假定管道的两端都被封堵。目的是计算在管道中的任何位置从泄漏处排出的液体总量。压力/流速无关紧要。我要说明的主要部分将是所有集水口/谷(例如在浴室水槽中),即使其余的管道排水,液体也会残留在其中,如下所示:

https://www.youtube.com/watch?v=o82yNzLIKYo

管道半径和泄漏位置将由用户设置。

我真的在寻找正确方向的推动力,我想尽可能自己解决这个问题。我对编程没问题,但是有关实际逻辑的任何建议都会有所帮助,谢谢高级。 enter image description here

在这个说 graph表示在x轴上的点9出现泄漏,并且管道的已知半径 r 。我试图弄清楚如何使我的脚本以 r 的形式输出液体量,而不管时间如何。而且,如果由于损坏而导致管道中发生泄漏,空气会进入,水会流出,但由于管道的各种捕获物和高度不同,并不是所有的水都流了起来。

2 个答案:

答案 0 :(得分:0)

对于半径恒定的管道,其半径远小于高程变化,即管道的截面始终充满水。我认为,在这种情况下,如果将管道的两端盖住,那是行不通的,必须有一些空气进入才能让水排出。剩余的充满水的管道部分在左自由表面(绿色圆圈)和右自由表面(红色正方形)之间。为简单起见,假定管道的两端是最大高程点,否则管道将自己排空。平衡可能不稳定。

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

def find_first_intersection(x, y, y_leak):
    for i in range(len(x)-1):
        dy_left = y[i] - y_leak
        dy_right = y[i+1] -  y_leak

        if  dy_left*dy_right < 0:
            x_free = x[i] + (y_leak - y[i])*(x[i+1] - x[i])/(y[i+1] - y[i])
            break

    return x_free

# Generate random data
x = np.linspace(0, 1, 10)
y = np.random.rand(*np.shape(x))
y[0], y[-1] = 1.1, 1.1
x_leak = np.random.rand(1)

# Look for the free surfaces
y_leak = np.interp(x_leak, x, y)

x_free_left = find_first_intersection(x, y, y_leak)
x_free_right =  find_first_intersection(x[::-1], y[::-1], y_leak)

# Plot
plt.plot(x, y, '-', label='pipe');
plt.plot(x_leak, y_leak, 'sk', label='leak')
plt.axhline(y=y_leak, linestyle=':', label='surface level');

plt.plot(x_free_left, y_leak, 'o', label="left free surface");
plt.plot(x_free_right, y_leak, 's', label="right free surface");

plt.legend(bbox_to_anchor=(1.5, 1.)); plt.xlabel('x'); plt.ylabel('y');

example

我在图上添加了一些注释。我认为水会残留在“混乱部分”中是令人困惑的,因为我认为这仅对直径非常小的管道有效。对于较大的管道​​,此处的水将流过泄漏处,然后估计管道的剩余填充部分更为复杂...

答案 1 :(得分:0)

如果我对问题的理解正确,我认为可以通过以下方法实现 从泄漏点左右穿过管道。在每个点 将当前水位与管道高程进行比较,结果是 在水位保持不变的淹没点或海滩和 一个新的干峰。必须进行插值才能计算出 海滩。

一个实现如下所示。该算法的大部分位于 traverse功能。希望这些评论提供足够的描述。

#!/usr/bin/python3

import numpy as np
import matplotlib.pyplot as pp

# Positions and elevations
n = 25
h = np.random.random((n, ))
x = np.linspace(0, 1, h.size)

# Index of leak
leak = np.random.randint(0, h.size)

# Traverse a pipe with positions (x) and elevations (h) from a leak index
# (leak) in a direction (step, +1 or -1). Return the positions of the changes
# in water level (y) the elevations at these changes (g) and the water level
# values (w).
def traverse(x, h, leak, step):
    # End of the index range for the traversal
    end = h.size if step == 1 else -1
    # Initialise 1-element output arrays with values at the leak
    y, g, w = [x[leak]], [h[leak]], [h[leak]]
    # Loop from the index adjacent to the leak
    for i in range(leak + step, end, step):
        if w[-1] > h[i]:
            # The new height is less than the old water level. Location i is
            # submerged. No new points are created and the water level stays
            # the same.
            y.append(x[i])
            g.append(h[i])
            w.append(w[-1])
        else:
            # The new height is greater than the old water level. We have a
            # "beach" and a "dry peak".
            # ...
            # Calculate the location of the beach as the position where the old
            # water level intersects the pipe section from [i-step] to [i].
            # This is added as a new point. The elevation and water level are
            # the same as the old water level.
            # ...
            # The if statement is not strictly necessary. It just prevents
            # duplicate points being generated.
            if w[-1] != h[i-step]:
                t = (w[-1] - h[i-step])/(h[i] - h[i-step])
                b = x[i-step] + (x[i] - x[i-step])*t
                y.append(b)
                g.append(w[-1])
                w.append(w[-1])
            # ...
            # Add the dry peak.
            y.append(x[i])
            g.append(h[i])
            w.append(h[i])
    # Convert from list to numpy array and return
    return np.array(y), np.array(g), np.array(w)

# Traverse left and right
yl, gl, wl = traverse(x, h, leak, -1)
yr, gr, wr = traverse(x, h, leak, 1)

# Combine, reversing the left arrays and deleting the repeated start point
y = np.append(yl[:0:-1], yr)
g = np.append(gl[:0:-1], gr)
w = np.append(wl[:0:-1], wr)

# Output the total volume of water by integrating water level minus elevation
print('Total volume =', np.trapz(w - g, y), 'm^3 per unit cross sectional area')

# Display
pp.plot(x, h, '.-', label='elevation')
pp.plot(y, w, '.-', label='water level')
pp.plot([x[leak]], [h[leak]], 'o', label='leak')
pp.legend()
pp.show()

Sample output