我想用指向对象的指针初始化一个容器。我目前有这样一个循环:
for(int i=0;i < n;i++) {
container.push_back(new Object());
}
哪些C ++操作(即类似于std::transform
)有权替换此循环并使用n
新创建的对象初始化容器?
答案 0 :(得分:7)
constexpr int n = 10;
std::vector<Object*> v1(n);
std::generate(v1.begin(), v1.end(), [](){ return new Object(); });
std::vector<Object*> v2;
v2.reserve(n); // pre-allocate sufficient memory to prevent re-allocations
// (you should have done in original loop approach as well)
std::generate_n(std::back_inserter(v2), n, [] { return new Object(); });
答案 1 :(得分:5)
您可以将std::generate_n
和std::back_inserter
与lambda一起使用。
std::generate_n(std::back_inserter(container), n, [] { return new Object(); });
答案 2 :(得分:0)
目标是这种语法:
std::vector<Object*> v1 = generate([](auto&&){ return new Object; }, 10).make_container();
我们说要生成具有特定lambda的10个元素,然后创建一个要求类型的容器。
它需要一些样板。首先,一个计数并调用函数的输入迭代器:
template<class F>
struct generator_iterator {
F f;
std::size_t i = 0;
using self=generator_iterator;
friend bool operator==(self const& lhs, self const& rhs){ return lhs.i==rhs.i; }
friend bool operator!=(self const& lhs, self const& rhs){ return lhs.i!=rhs.i; }
using reference=std::result_of_t<F const&(std::size_t const&)>;
using value_type=std::decay_t<reference>;
using difference_type=std::ptrdiff_t;
using pointer=value_type*;
using iterator_category=std::input_iterator_tag;
self& operator++(){++i; return *this;}
self operator++(int){auto tmp=*this; ++*this; return tmp;}
reference operator*()const{ return f(i); }
pointer operator->()const { return std::addressof(f(i)); }
friend difference_type operator-( self const& lhs, self const& rhs ) { return lhs.i-rhs.i; }
self& operator-=( difference_type rhs )& {
i-=rhs;
return *this;
}
self& operator+=( difference_type rhs )& {
i+=rhs;
return *this;
}
friend difference_type operator+( self lhs, difference_type rhs ) {
lhs += rhs;
return lhs;
}
friend difference_type operator-( self lhs, difference_type rhs ) {
lhs -= rhs;
return lhs;
}
};
接下来是一个范围原语,它带有.make_container()
方法,可通过显式或隐式传递类型将范围转换为容器:
template<class It>
struct range_t {
It b, e;
It begin() const { return b; }
It end() const { return e; }
private:
struct container_maker {
range_t const* self;
template<class C>
operator C()&& {
return {self->begin(), self->end()};
}
};
public:
container_maker make_container()const{
return {this};
}
// C is optional
template<class C>
C make_container()const{
return make_container();
}
};
template<class It>
range_t<It> range( It s, It f ) {
return {std::move(s), std::move(f)};
}
然后我们将它们粘合在一起:
template<class F>
auto generate( F&& f, std::size_t count ) {
generator_iterator<std::decay_t<F>> e{f, count};
generator_iterator<std::decay_t<F>> b{std::forward<F>(f)};
return range( std::move(b), std::move(e) );
}
然后编译:
std::vector<Object*> v1 = generate([](auto&&){ return new Object; }, 10).make_container();