我正在尝试将Jpeg图像集转换为TFrecords。但是TFrecord文件占用的空间几乎是映像集的5倍。经过大量的搜索,我了解到将JPEG写入TFrecord中时,它们不再是JPEG。但是,我还没有遇到一个可以理解的代码解决方案。请告诉我下面的代码应进行哪些更改才能将JPEG写入Tfrecords。
def print_progress(count, total):
pct_complete = float(count) / total
msg = "\r- Progress: {0:.1%}".format(pct_complete)
sys.stdout.write(msg)
sys.stdout.flush()
def wrap_int64(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def wrap_bytes(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def convert(image_paths , labels, out_path):
# Args:
# image_paths List of file-paths for the images.
# labels Class-labels for the images.
# out_path File-path for the TFRecords output file.
print("Converting: " + out_path)
# Number of images. Used when printing the progress.
num_images = len(image_paths)
# Open a TFRecordWriter for the output-file.
with tf.python_io.TFRecordWriter(out_path) as writer:
# Iterate over all the image-paths and class-labels.
for i, (path, label) in enumerate(zip(image_paths, labels)):
# Print the percentage-progress.
print_progress(count=i, total=num_images-1)
# Load the image-file using matplotlib's imread function.
img = imread(path)
# Convert the image to raw bytes.
img_bytes = img.tostring()
# Create a dict with the data we want to save in the
# TFRecords file. You can add more relevant data here.
data = \
{
'image': wrap_bytes(img_bytes),
'label': wrap_int64(label)
}
# Wrap the data as TensorFlow Features.
feature = tf.train.Features(feature=data)
# Wrap again as a TensorFlow Example.
example = tf.train.Example(features=feature)
# Serialize the data.
serialized = example.SerializeToString()
# Write the serialized data to the TFRecords file.
writer.write(serialized)
编辑:有人可以回答这个问题吗!!
答案 0 :(得分:1)
您不应将图像数据仅保存在文件名中。然后,要在将记录送入训练循环时加载图像,最好使用相对较新的Dataset
API。来自docs:
# Reads an image from a file, decodes it into a dense tensor, and resizes it
# to a fixed shape.
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string)
image_resized = tf.image.resize_images(image_decoded, [28, 28])
return image_resized, label
# A vector of filenames.
filenames = tf.constant(["/var/data/image1.jpg", "/var/data/image2.jpg", ...])
# `labels[i]` is the label for the image in `filenames[i].
labels = tf.constant([0, 37, ...])
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_parse_function)
哪种方法更快?这里有许多竞争因素,例如:
因此,最后,了解不同的方法很重要。如果没有度量,我倾向于使用多文件小解决方案,因为它需要较少的处理我们开始的数据,并且如果它完全不合理,则不太可能在Tensorflow文档中使用。但是唯一真正的答案是测量。
答案 1 :(得分:0)
我们可以只使用内置的open
函数来获取字节,而不是将图像转换为数组并返回字节。这样,压缩的图像将被写入TFRecord。
替换这两行
img = imread(path)
img_bytes = img.tostring()
与
img_bytes = open(path,'rb').read()
参考: