我有一个3列的pyspark数据框:
ID ,每次出现多次; DATE ; DELAY ,如果按时付款则为0,否则为1。
已经按 ID 和 DATE 进行了排序。 我需要创建一个名为 CONSECUTIVE 的列,该列显示为每个ID用 DELAY = 1 连续支付了多少张连续账单。
数据示例和预期结果:
ID | DATE | DELAY | CONSECUTIVE
101 | 1 | 1 | 1
101 | 2 | 1 | 2
101 | 3 | 1 | 3
101 | 4 | 0 | 0
101 | 5 | 1 | 1
101 | 6 | 1 | 2
213 | 1 | 1 | 1
213 | 2 | 1 | 2
有没有不使用熊猫的方法吗?如果是这样,我该怎么办?
答案 0 :(得分:0)
您可以在window的帮助下进行3转换。
from pyspark.sql.window import Window
from pyspark.sql import functions as F
df = sqlContext.createDataFrame([
(101, 1, 1),
(101, 2, 1), # dasd
(101, 3, 0),
(101, 4, 1)
], ["id", 'date', 'delay'])
window = Window.partitionBy('id').orderBy('date')
last_value = F.last('rank').over(window.rowsBetween(-2, -1))
consecutive = F.when( F.col('delay')==0, 0) \
.otherwise( F.when(F.col('last_rank').isNull(), 1) \
.otherwise( F.col('last_rank')+1))
df \
.withColumn('rank', F.row_number().over(window)) \
.withColumn('rank', F.when(F.col('delay')!=0, F.col('rank')).otherwise(0)) \
.withColumn('last_rank', last_value) \
.withColumn('consecutive', consecutive).show()
结果:
+---+----+-----+----+---------+-----------+
| id|date|delay|rank|last_rank|consecutive|
+---+----+-----+----+---------+-----------+
|101| 1| 1| 1| null| 1|
|101| 1| 1| 2| 1| 2|
|101| 1| 0| 0| 2| 0|
|101| 1| 1| 4| 0| 1|
+---+----+-----+----+---------+-----------+