如何使用控制小部件将子图添加到图中

时间:2018-07-11 18:05:03

标签: python-3.x matplotlib text widget

我想通过两个由一对小部件滑块控制的子图扩展问题"How to keep some text relative to the line into the plot when the plot changes"的解决方案。

我尝试过的代码没有错误,但是没有显示图形或控件。

from ipywidgets import widgets
from IPython.display import display
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook

fig1, ax1 = plt.subplots(211)
line1, = ax1.semilogx([],[], label='Multipath')
hline1 = ax1.axhline(y = 0, linewidth=1.2, color='black',ls='--')
text1 = ax1.text(0, 0, "T Threshold",
                verticalalignment='top', horizontalalignment='left',
                transform=ax1.get_yaxis_transform(),
                color='brown', fontsize=10)
ax1.set_xlabel('Separation Distance, r (m)')
ax1.set_ylabel('Received Power, $P_t$ (dBm)')
ax1.grid(True,which="both",ls=":")
ax1.legend()

fig2, ax2 = plt.subplots(212)
line2, = ax2.semilogx([],[], label='Monostatic Link')
hline2 = ax2.axhline(y = 0, linewidth=1.2, color='black',ls='--')
text2 = ax2.text(0, 0, "R Threshold",
                verticalalignment='top', horizontalalignment='left',
                transform=ax2.get_yaxis_transform(),
                color='brown', fontsize=10)
ax2.set_xlabel('Separation Distance, r (m)')
ax2.set_ylabel('Received Power, $P_t$ (dBm)')
ax2.grid(True,which="both",ls=":")
ax2.legend()

def update_plot(h1, h2):
    D = np.arange(0.5, 12.0, 0.0100)
    r = np.sqrt((h1-h2)**2 + D**2)
    freq = 865.7 #freq = 915 MHz
    lmb = 300/freq 
    H = D**2/(D**2+2*h1*h2)
    theta = 4*np.pi*h1*h2/(lmb*D)
    q_e = H**2*(np.sin(theta))**2 + (1 - H*np.cos(theta))**2
    q_e_rcn1 = 1
    P_x_G = 4 # 4 Watt EIRP
    sigma = 1.94
    N_1 = np.random.normal(0,sigma,D.shape)
    rnd = 10**(-N_1/10)
    F = 10
    y = 10*np.log10( 1000*(P_x_G*1.622*((lmb)**2) *0.5*1) / (((4*np.pi*r)**2) *1.2*1*F)*q_e*rnd*q_e_rcn1 )
    line1.set_data(r,y)

    hline1.set_ydata(-18)
    text1.set_position((0.02, -18.5))
    ax1.relim()
    ax1.autoscale_view()
    fig1.canvas.draw_idle()
    ######################################
    rd =np.sqrt((h1-h2)**2 + D**2)
    rd = np.sort(rd)
    P_r=0.8
    G_r=5 # 7dBi
    q_e_rcn2 = 1
    N_2 = np.random.normal(0, sigma*2, D.shape)
    rnd_2 = 10**(-N_2/10)
    F_2 = 126 # 21 dB for K=3dB and P_outage = 0.05
    y = 10*np.log10(  1000*(P_r*(G_r*1.622)**2*(lmb)**4*0.5**2*0.25)/((4*np.pi*rd)**4*1.2**2*1**2*F_2)*
            q_e**2*rnd*rnd_2*q_e_rcn1*q_e_rcn2  )
    line2.set_data(rd,y)
    hline2.set_ydata(-80)
    text2.set_position((0.02, -80.5))
    ax2.relim()
    ax2.autoscale_view()
    fig2.canvas.draw_idle()

r_height = widgets.FloatSlider(min=0.5, max=4, value=0.9, description= 'R_Height:')
t_height = widgets.FloatSlider(min=0.15, max=1.5, value=0.5, description= 'T_Height:')
widgets.interactive(update_plot, h1=r_height, h2=t_height)

在第二个子图中,在y = -80处有一条水平线,其中的文本应以与该图的第一个子图类似的方式移动。

如何使用相同的控件添加第二个子图?

致谢。

1 个答案:

答案 0 :(得分:2)

此代码确实产生错误。问题在于您正在创建一个具有211(即,两个十一)子图的图形。那些存储在名为ax1的数组中,该数组没有.semilogx方法。因此出现错误AttributeError: 'numpy.ndarray' object has no attribute 'semilogx'

因此,您需要的只是两个子图,您可以直接将其解压缩。

fig, (ax1, ax2) = plt.subplots(nrows=2)

其余的基本上是针对新情况调整代码。然后看起来应该像这样:

from ipywidgets import widgets
from IPython.display import display
import matplotlib.pyplot as plt
import numpy as np
%matplotlib notebook

fig, (ax1, ax2) = plt.subplots(nrows=2)
line1, = ax1.semilogx([],[], label='Multipath')
hline1 = ax1.axhline(y = 0, linewidth=1.2, color='black',ls='--')
text1 = ax1.text(0, 0, "T Threshold",
                verticalalignment='top', horizontalalignment='left',
                transform=ax1.get_yaxis_transform(),
                color='brown', fontsize=10)
ax1.set_xlabel('Separation Distance, r (m)')
ax1.set_ylabel('Received Power, $P_t$ (dBm)')
ax1.grid(True,which="both",ls=":")
ax1.legend()

line2, = ax2.semilogx([],[], label='Monostatic Link')
hline2 = ax2.axhline(y = 0, linewidth=1.2, color='black',ls='--')
text2 = ax2.text(0, 0, "R Threshold",
                verticalalignment='top', horizontalalignment='left',
                transform=ax2.get_yaxis_transform(),
                color='brown', fontsize=10)
ax2.set_xlabel('Separation Distance, r (m)')
ax2.set_ylabel('Received Power, $P_t$ (dBm)')
ax2.grid(True,which="both",ls=":")
ax2.legend()

def update_plot(h1, h2):
    D = np.arange(0.5, 12.0, 0.0100)
    r = np.sqrt((h1-h2)**2 + D**2)
    freq = 865.7 #freq = 915 MHz
    lmb = 300/freq 
    H = D**2/(D**2+2*h1*h2)
    theta = 4*np.pi*h1*h2/(lmb*D)
    q_e = H**2*(np.sin(theta))**2 + (1 - H*np.cos(theta))**2
    q_e_rcn1 = 1
    P_x_G = 4 # 4 Watt EIRP
    sigma = 1.94
    N_1 = np.random.normal(0,sigma,D.shape)
    rnd = 10**(-N_1/10)
    F = 10
    y = 10*np.log10( 1000*(P_x_G*1.622*((lmb)**2) *0.5*1) / (((4*np.pi*r)**2) *1.2*1*F)*q_e*rnd*q_e_rcn1 )
    line1.set_data(r,y)

    hline1.set_ydata(-18)
    text1.set_position((0.02, -18.5))
    ax1.relim()
    ax1.autoscale_view()

    ######################################
    rd =np.sqrt((h1-h2)**2 + D**2)
    rd = np.sort(rd)
    P_r=0.8
    G_r=5 # 7dBi
    q_e_rcn2 = 1
    N_2 = np.random.normal(0, sigma*2, D.shape)
    rnd_2 = 10**(-N_2/10)
    F_2 = 126 # 21 dB for K=3dB and P_outage = 0.05
    y = 10*np.log10(  1000*(P_r*(G_r*1.622)**2*(lmb)**4*0.5**2*0.25)/((4*np.pi*rd)**4*1.2**2*1**2*F_2)*
            q_e**2*rnd*rnd_2*q_e_rcn1*q_e_rcn2  )
    line2.set_data(rd,y)
    hline2.set_ydata(-80)
    text2.set_position((0.02, -80.5))
    ax2.relim()
    ax2.autoscale_view()

    fig.canvas.draw_idle()

r_height = widgets.FloatSlider(min=0.5, max=4, value=0.9, description= 'R_Height:')
t_height = widgets.FloatSlider(min=0.15, max=1.5, value=0.5, description= 'T_Height:')
widgets.interactive(update_plot, h1=r_height, h2=t_height)