Python阅读线比阅读速度快

时间:2018-07-11 08:40:58

标签: python readlines

这与In Python, is read() , or readlines() faster?有关,但不完全相同。我有一个小文件,可以多次阅读。我发现用readlines()和联接读取比用read()读取要快。我为此找不到很好的解释,但这使我感到困惑。

In [34]: cat test.txt
ATOM      1  N   MET A   1      -1.112 -18.674 -30.756  1.00 16.53           N  
ATOM      2  CA  MET A   1       0.327 -18.325 -30.772  1.00 16.53           C  
ATOM      3  C   MET A   1       0.513 -16.897 -31.160  1.00 16.53           C  
ATOM      4  O   MET A   1      -0.063 -15.998 -30.552  1.00 16.53           O  
ATOM      5  CB  MET A   1       1.083 -19.211 -31.777  1.00 16.53           C  
ATOM      6  CG  MET A   1       1.101 -20.691 -31.391  1.00 16.53           C  
ATOM      7  SD  MET A   1       1.989 -21.764 -32.559  1.00 16.53           S  
ATOM      8  CE  MET A   1       3.635 -21.109 -32.159  1.00 16.53           C  
ATOM      9  N   LYS A   2       1.333 -16.657 -32.199  1.00146.35           N  
ATOM     10  CA  LYS A   2       1.595 -15.313 -32.613  1.00146.35           C  

In [35]: timeit open("test.txt").read()
10000 loops, best of 3: 58.7 µs per loop

In [36]: timeit "\n".join(open("test.txt").readlines())
10000 loops, best of 3: 56.4 µs per loop

结果非常一致。

1 个答案:

答案 0 :(得分:3)

对于很小的文件,它没有任何作用。

查看大文件...

import timeit

data = '''
ATOM      1  N   MET A   1      -1.112 -18.674 -30.756  1.00 16.53           N  
ATOM      2  CA  MET A   1       0.327 -18.325 -30.772  1.00 16.53           C  
ATOM      3  C   MET A   1       0.513 -16.897 -31.160  1.00 16.53           C  
ATOM      4  O   MET A   1      -0.063 -15.998 -30.552  1.00 16.53           O  
ATOM      5  CB  MET A   1       1.083 -19.211 -31.777  1.00 16.53           C  
ATOM      6  CG  MET A   1       1.101 -20.691 -31.391  1.00 16.53           C  
ATOM      7  SD  MET A   1       1.989 -21.764 -32.559  1.00 16.53           S  
ATOM      8  CE  MET A   1       3.635 -21.109 -32.159  1.00 16.53           C  
ATOM      9  N   LYS A   2       1.333 -16.657 -32.199  1.00146.35           N  
ATOM     10  CA  LYS A   2       1.595 -15.313 -32.613  1.00146.35           C  
'''.lstrip()

names_and_sizes = []

for x in range(1, 10):
    reps = 1 + 2 ** (x + 2)
    with open('test_{}.txt'.format(x), 'w') as outf:
        for x in range(reps):
            outf.write(data)
        names_and_sizes.append((outf.name, outf.tell()))

for filename, size in names_and_sizes:
    a = timeit.timeit(lambda: open(filename).read(), number=1000)
    b = timeit.timeit(lambda: "\n".join(open(filename).readlines()), number=1000)
    print(filename, size, a, b)

输出为

test_1.txt 7290 0.07285173307172954 0.09389211190864444
test_2.txt 13770 0.08125667599961162 0.1290126950480044
test_3.txt 26730 0.08221574104391038 0.17529957089573145
test_4.txt 52650 0.0865904720267281 0.2977212209952995
test_5.txt 104490 0.1046126070432365 0.5687746809562668
test_6.txt 208170 0.1773586180061102 1.1868972890079021
test_7.txt 415530 0.26339677802752703 2.0290830068988726
test_8.txt 830250 0.31897587003186345 4.381448873900808
test_9.txt 1659690 0.6923789769643918 9.483053435920738

或更直观

chart of time spent

(并且两个轴都是对数的)

enter image description here