如何在CV2 DNN模块中使用自定义张量流模型?

时间:2018-07-11 03:36:02

标签: python tensorflow cv2

我重新训练了基于Google Tensorflow对象检测API的对象检测模型。我将其导出为冻结的推理图。我想将其与CV2的DNN模块一起使用:

npm can't find a package.json file in your current directory

我收到此错误:cap = cv2.VideoCapture(URL) cvNet = cv2.dnn.readNetFromTensorflow('graph.pb', 'graph.pbtxt') while True: ret, img = cap.read() rows = img.shape[0] cols = img.shape[1] cvNet.setInput(cv2.dnn.blobFromImage(img, 1.0/127.5, (300, 300), (127.5, 127.5, 127.5), swapRB=True, crop=False)) cvOut = cv2Net.forward() for detection in cv2Out[0,0,:,:]: score = float(detection[2]) if score > 0.3: left = detection[3] * cols top = detection[4] * rows right = detection[5] * cols bottom = detection[6] * rows cv2.rectangle(img, (int(left), int(top)), (int(right), int(bottom)), (23, 230, 210), thickness=2) cv2.imshow('img', img) if cv2.waitKey(1) ==27: exit(0)

根据我的研究,我认为我必须优化推理图。我找不到任何有关此操作方法的文档。

如果有人能指出我正确的方向,将不胜感激。

0 个答案:

没有答案