我正在尝试通过扫帚总结19个多项式回归模型的结果。我已遵循此SO Question,并尝试将其与broom::tidy
一起使用。我的脚本如下:
ALTER PROCEDURE [dbo].[spRegressionPeak]
@StudyID int
AS
BEGIN
Declare @sStudyID VARCHAR(50)
Set @sStudyID = CONVERT(VARCHAR(50),@StudyID)
--We are selecting the distinct StudyID, Productnumber, ResponseID and mean
values 1 thorugh 6 from the CodeMeans table.
--Note that spCodeMeans must be run before running this stored procedure to
ensure response data exists in the CodeMeans table.
--We use IsNull values to pass zeroes where an average wasn't calculated os that
the polynomial regression can be calculated.
DECLARE @inquery AS NVARCHAR(MAX) = '
Select
c.StudyID, c.RespID, c.LikingOrder, avg(isnull(C1,0)) as C1, avg(isnull(C2,0)) as C2, avg(isnull(C3,0)) as C3, avg(isnull(C4,0)) as C4,
avg(isnull(C5,0)) as C5, avg(isnull(C6,0)) as C6, avg(isnull(C7,0)) as C7, avg(isnull(C8,0)) as C8, avg(isnull(C9,0)) as C9,
avg(isnull(C10,0)) as C10, avg(isnull(C11,0)) as C11, avg(isnull(C12,0)) as C12, avg(isnull(C13,0)) as C13, avg(isnull(C14,0)) as C14,
avg(isnull(C15,0)) as C15, avg(isnull(C16,0)) as C16, avg(isnull(C17,0)) as C17, avg(isnull(C18,0)) as C18, avg(isnull(C19,0)) as C19
from ClosedStudyResponses c
where c.StudyID = @StudyID
group by StudyID, RespID, LikingOrder
order by RespID
'
--We are setting @inquery aka InputDataSet to be our initial dataset.
--R Services requires that a data.frame be passed to any calculations being
generated. As such, df is simply data framing the @inquery data.
--The res object holds the polynomial regression results by RespondentID and
LikingOrder for each of the averages in the @inquery resultset.
EXEC sp_execute_external_script @language = N'R'
, @script = N'
library(tidyr, broom)
studymeans <- InputDataSet
df <- data.frame(studymeans)
lin.mod.1 <- lm(df$LikingOrder ~ poly(df$C1,3, raw=TRUE))
lin.mod.2 <- lm(df$LikingOrder ~ poly(df$C2,3, raw=TRUE))
lin.mod.3 <- lm(df$LikingOrder ~ poly(df$C3,3, raw=TRUE))
lin.mod.4 <- lm(df$LikingOrder ~ poly(df$C4,3, raw=TRUE))
lin.mod.5 <- lm(df$LikingOrder ~ poly(df$C5,3, raw=TRUE))
lin.mod.6 <- lm(df$LikingOrder ~ poly(df$C6,3, raw=TRUE))
lin.mod.7 <- lm(df$LikingOrder ~ poly(df$C7,3, raw=TRUE))
lin.mod.8 <- lm(df$LikingOrder ~ poly(df$C8,3, raw=TRUE))
lin.mod.9 <- lm(df$LikingOrder ~ poly(df$C9,3, raw=TRUE))
lin.mod.10 <- lm(df$LikingOrder ~ poly(df$C10,3, raw=TRUE))
lin.mod.11 <- lm(df$LikingOrder ~ poly(df$C11,3, raw=TRUE))
lin.mod.12 <- lm(df$LikingOrder ~ poly(df$C12,3, raw=TRUE))
lin.mod.13 <- lm(df$LikingOrder ~ poly(df$C13,3, raw=TRUE))
lin.mod.14 <- lm(df$LikingOrder ~ poly(df$C14,3, raw=TRUE))
lin.mod.15 <- lm(df$LikingOrder ~ poly(df$C15,3, raw=TRUE))
lin.mod.16 <- lm(df$LikingOrder ~ poly(df$C16,3, raw=TRUE))
lin.mod.17 <- lm(df$LikingOrder ~ poly(df$C17,3, raw=TRUE))
lin.mod.18 <- lm(df$LikingOrder ~ poly(df$C18,3, raw=TRUE))
lin.mod.19 <- lm(df$LikingOrder ~ poly(df$C19,3, raw=TRUE))
lst <- lapply(ls(pattern="lin.mod"), get)
allmodels <- lapply(lst, summary)
res <- broom::tidy(allmodels)
'
, @input_data_1 = @inquery
, @output_data_1_name = N'res'
, @params = N'@StudyID int'
,@StudyID = @StudyID
--- Edit this line to handle the output data frame.
--WITH RESULT SETS ((StudyID int, RespID int, LikingOrder int, NewColumn int,
res varchar(max)));
END;
将有效的StudyID输入参数传递给上面的脚本时,它会引发以下错误:
Error in setNames(data.frame(data), value.name) :
'names' attribute [1] must be the same length as the vector [0]
Calls: source ... <Anonymous> -> <Anonymous> -> melt.default -> setNames
In addition: There were 50 or more warnings (use warnings() to see the first
50)
我的输入数据如下: 理想的结果是在data.frame中获得所有19个模型的摘要。如何解决错误并修改代码以完成最终结果?
答案 0 :(得分:4)
在没有工作环境的情况下,我不确定如何正确设置数据,但是似乎您正在尝试在多个预测变量列上使用具有相同因变量的模型进行拟合。我认为丢失的部分是根据broom and dplyr小插图对rowwise
的调用,但不是完全确定。不过,这是mtcars
数据集的有效示例。请注意,结构是在具有包含模型的列表列的行数据框中使用tidy
,而不是直接在列表上使用。您还可以通过在包含预测变量列的数据帧上进行映射来直接创建模型,而不必在环境中存储模型并且需要使用get
和ls
的情况下进行混乱。每当您发现自己使用ls
时,请考虑是否可以将元素放入列表中!
编辑:在再次看到此问题提示的小插图后,我意识到您实际上可以像现在显示的那样做一个快速管道(请参阅使用enframe
的方法的编辑历史记录。通过gather
ing将数据转换为适合分组模型拟合的格式,您可以更整齐地获得所需的结果!
library(tidyverse)
library(broom)
mtcars %>%
gather(predictor, measure, -mpg) %>%
group_by(predictor) %>%
do(tidy(lm(mpg ~ measure, .)))
#> # A tibble: 20 x 6
#> # Groups: predictor [10]
#> predictor term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 am (Intercept) 17.1 1.12 15.2 1.13e-15
#> 2 am measure 7.24 1.76 4.11 2.85e- 4
#> 3 carb (Intercept) 25.9 1.84 14.1 9.22e-15
#> 4 carb measure -2.06 0.569 -3.62 1.08e- 3
#> 5 cyl (Intercept) 37.9 2.07 18.3 8.37e-18
#> 6 cyl measure -2.88 0.322 -8.92 6.11e-10
#> 7 disp (Intercept) 29.6 1.23 24.1 3.58e-21
#> 8 disp measure -0.0412 0.00471 -8.75 9.38e-10
#> 9 drat (Intercept) -7.52 5.48 -1.37 1.80e- 1
#> 10 drat measure 7.68 1.51 5.10 1.78e- 5
#> 11 gear (Intercept) 5.62 4.92 1.14 2.62e- 1
#> 12 gear measure 3.92 1.31 3.00 5.40e- 3
#> 13 hp (Intercept) 30.1 1.63 18.4 6.64e-18
#> 14 hp measure -0.0682 0.0101 -6.74 1.79e- 7
#> 15 qsec (Intercept) -5.11 10.0 -0.510 6.14e- 1
#> 16 qsec measure 1.41 0.559 2.53 1.71e- 2
#> 17 vs (Intercept) 16.6 1.08 15.4 8.85e-16
#> 18 vs measure 7.94 1.63 4.86 3.42e- 5
#> 19 wt (Intercept) 37.3 1.88 19.9 8.24e-19
#> 20 wt measure -5.34 0.559 -9.56 1.29e-10
由reprex package(v0.2.0)于2018-07-10创建。
答案 1 :(得分:1)
您没有给我们提供可重复的示例;这似乎有效。一些潜在的问题:您需要在模型上运行tidy
,而不是摘要;最好避免在模型公式中进行$
索引。
library(purrr)
df <- mtcars
predvars <- colnames(mtcars)[-1]
...根据您的情况,这是paste0("C",1:19)
...
respvar <- "mpg" ## would be "LikingOrder"
predpolys <- sprintf("poly(%s,3,raw=TRUE)",predvars)
forms <- map(predpolys, reformulate,
response=respvar) ## construct formulas
names(forms) <- predvars ## names will be inherited by model lists
modList <- map(forms, lm, data= df) ## fit all models
res <- map(modList, broom::tidy) ## tidy all models
如果需要,您可以在此时dplyr::bind_rows(res,.id="predvar")
...