import numpy as np
import matplotlib.pyplot as plt
points = np.array([
(333, 195.3267),
(500, 223.0235),
(1000, 264.5914),
(2000, 294.8728),
(5000, 328.3523),
(10000, 345.4688)
])
# get x and y vectors
x = points[:,0]
y = points[:,1]
要创建适合曲线的指数曲线,下一步是什么?
答案 0 :(得分:1)
这里是将数据拟合为对数二次方程的示例,该二次方程比指数拟合的数据好一些,并针对原始数据的散点图绘制了拟合曲线。该代码不是最佳的,例如,它反复记录X的日志,而不是一次记录一次。通过直接使用线性拟合方法也可以更有效地拟合log(x)数据,但是在这里,您可以用更少的代码更改更轻松地用指数替换拟合方程。
import numpy
import matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
points = numpy.array([(333, 195.3267), (500, 223.0235), (1000, 264.5914), (2000, 294.8728
), (5000, 328.3523), (10000, 345.4688)])
# get x and y vectors
xData = points[:,0]
yData = points[:,1]
# function to be fitted
def LogQuadratic(x, a, b, c):
return a + b*numpy.log(x) + c*numpy.power(numpy.log(x), 2.0)
# some initial parameter values
initialParameters = numpy.array([1.0, 1.0, 1.0])
fittedParameters, pcov = curve_fit(LogQuadratic, xData, yData, initialParameters)
# values for display of fitted function
a, b, c = fittedParameters
# for plotting the fitting results
xPlotData = numpy.linspace(min(xData), max(xData), 50)
y_plot = LogQuadratic(xPlotData, a, b, c)
plt.plot(xData, yData, 'D') # plot the raw data as a scatterplot
plt.plot(xPlotData, y_plot) # plot the equation using the fitted parameters
plt.show()
print('fitted parameters:', fittedParameters)