使用预训练模型在张量流中训练新模型

时间:2018-07-10 15:28:45

标签: python tensorflow machine-learning

我正在创建一个CNN自动编码器,以充当特征提取器,然后在张量流中使用简单的MLP分类器。我正在单独进行训练,因此我首先训练自动编码器以将数据编码到较低维度的特征空间中,然后再通过将输入传递给经过训练的自动编码器再通过MLP来分别训练MLP分类器。 / p>

我目前在连接两个模型时遇到问题。我的方法是加载旧图,并为输出张量和原始输入张量获取占位符。然后,我还在原始图的最后一层上创建了一个停止梯度,这样我就只训练MLP而不训练自动编码器。然后,我使用变量作用域仅初始化新图的变量。

我在运行代码时遇到多个错误,从未初始化的变量到有太多错误。有一个更好的方法吗?我将在下面添加代码。

自动编码器培训工作代码

import tensorflow as tf
import numpy as np
import math

def lrelu(x, leak=0.2, name="lrelu"):
    """Leaky rectifier.
    Parameters
    ----------
    x : Tensor
        The tensor to apply the nonlinearity to.
    leak : float, optional
        Leakage parameter.
    name : str, optional
        Variable scope to use.
    Returns
    -------
    x : Tensor
        Output of the nonlinearity.
    """
    with tf.variable_scope(name):
        f1 = 0.5 * (1 + leak)
        f2 = 0.5 * (1 - leak)
        return f1 * x + f2 * abs(x)

def corrupt(x):
    """Take an input tensor and add uniform masking.
    Parameters
    ----------
    x : Tensor/Placeholder
        Input to corrupt.
    Returns
    -------
    x_corrupted : Tensor
        50 pct of values corrupted.
    """
    return tf.multiply(x, tf.cast(tf.random_uniform(shape=tf.shape(x),
                                               minval=0,
                                               maxval=2,
                                               dtype=tf.int32), tf.float32))

def autoencoder(input_shape = [None, 784],
               n_filters = [1, 10, 10, 10],
               filter_sizes = [3, 3, 3, 3],
               corruption = False):
    """Build a deep denoising autoencoder w/ tied weights.
    Parameters
    ----------
    input_shape : list, optional
        Description
    n_filters : list, optional
        Description
    filter_sizes : list, optional
        Description
    Returns
    -------
    x : Tensor
        Input placeholder to the network
    z : Tensor
        Inner-most latent representation
    y : Tensor
        Output reconstruction of the input
    cost : Tensor
        Overall cost to use for training
    Raises
    ------
    ValueError
        Description
    """

    # Input to network
    x = tf.placeholder(tf.float32, input_shape, name = 'x')
    print(x)

    # Convert 2D input is converted to square
    if len(x.get_shape()) == 2:
        x_dim = np.sqrt(x.get_shape().as_list()[1])
        if x_dim != int(x_dim):
            raise ValueError('Unsupported Input Dimensions')
        x_dim = int(x_dim)
        x_tensor = tf.reshape(x, [-1, x_dim, x_dim, n_filters[0]])
    elif len(x.get_shape()) == 4:
        x_tensor = x
    else:
        raise ValueError('Unsupported Input Dimensions')
    current_input = x_tensor

    # Optionally apply denoising autoencoder
    if corruption:
        current_input = corrupt(current_input)

    # Encoder
    encoder = []
    shapes = []
    for layer_i, n_output in enumerate(n_filters[1:]):
        n_input = current_input.get_shape().as_list()[3] # This will be # Channels
        shapes.append(current_input.get_shape().as_list())
        W = tf.Variable(
            tf.random_uniform([
                filter_sizes[layer_i],
                filter_sizes[layer_i],
                n_input, n_output],
                -1.0 / math.sqrt(n_input),
                1.0/math.sqrt(n_input))) # This is so we don't have to initialize ourselves
        b = tf.Variable(tf.zeros([n_output]))
        encoder.append(W)
        output = lrelu(
            tf.add(tf.nn.conv2d(
                current_input, W, strides = [1,2,2,1], padding = 'SAME'), b))
        current_input = output
        print(W)
        print(b)
        print(output)

    # Store the latent representation
    z = current_input
    print(z)
    encoder.reverse()
    shapes.reverse()

    for layer_i, shape in enumerate(shapes):
        W = encoder[layer_i]
        b = tf.Variable(tf.zeros([W.get_shape().as_list()[2]]))
        output = lrelu(tf.add(
            tf.nn.conv2d_transpose(
                current_input, W,
                tf.stack([tf.shape(x)[0], shape[1], shape[2], shape[3]]),
                strides = [1,2,2,1], padding = 'SAME'), b))
        current_input = output

    # Now we have a reconstruction
    y = current_input
    cost = tf.reduce_sum(tf.square(y - x_tensor))

    return {'x': x, 'z': z, 'y': y, 'cost': cost}

# %%
def test_mnist():
    """Test the convolutional autoencder using MNIST."""
    # %%
    import tensorflow as tf
    import tensorflow.examples.tutorials.mnist.input_data as input_data
    import matplotlib.pyplot as plt

    # %%
    # load MNIST as before
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    mean_img = np.mean(mnist.train.images, axis=0)
    ae = autoencoder()

    # %%
    learning_rate = 0.01
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(ae['cost'])

    # Create saver
    saver = tf.train.Saver(tf.trainable_variables())

    # %%
    # We create a session to use the graph
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # %%
    # Fit all training data
    batch_size = 100
    n_epochs = 1
    for epoch_i in range(n_epochs):
        for batch_i in range(mnist.train.num_examples // batch_size):
            batch_xs, _ = mnist.train.next_batch(batch_size)
            train = np.array([img - mean_img for img in batch_xs])
            sess.run(optimizer, feed_dict={ae['x']: train})
        print(epoch_i, sess.run(ae['cost'], feed_dict={ae['x']: train}))

    save_path = saver.save(sess, "AutoEncoderCheckpoints/AutoEncoderMNIST.ckpt")
    print("Model saved in path: %s" % save_path)

    # %%
    # Plot example reconstructions
    n_examples = 10
    test_xs, _ = mnist.test.next_batch(n_examples)
    test_xs_norm = np.array([img - mean_img for img in test_xs])
    recon, latent = sess.run([ae['y'], ae['z']], feed_dict={ae['x']: test_xs_norm})
    print(recon.shape)
    print(latent.shape)
    fig, axs = plt.subplots(2, n_examples, figsize=(20, 6))
    for example_i in range(n_examples):
        axs[0][example_i].imshow(
            np.reshape(test_xs[example_i, :], (28, 28)))
        axs[1][example_i].imshow(
            np.reshape(
                np.reshape(recon[example_i, ...], (784,)) + mean_img,
                (28, 28)))
    fig.show()
    plt.draw()
#     plt.waitforbuttonpress()

    new_fig, new_axs = plt.subplots(10, n_examples, figsize = (20,20))
    for chan in range(10):
        for example_i in range(n_examples):
            new_axs[chan][example_i].imshow(
            np.reshape(latent[example_i,...,chan],
            (4,4)))
    new_fig.show()
    plt.draw()

# %%
if __name__ == '__main__':
    test_mnist()

代码在不重新训练自动编码器的情况下无法训练MLP

aeMLP_saver = tf.train.import_meta_graph('AutoEncoderCheckpoints/AutoEncoderMNIST.ckpt.meta')
aeMLP_graph = tf.get_default_graph()

weights = {
    'h1': tf.Variable(tf.random_normal([160, 320])),
    'h2': tf.Variable(tf.random_normal([320, 640])),
    'out': tf.Variable(tf.random_normal([640, 10]))
}
biases = {
    'b1': tf.Variable(tf.random_normal([320])),
    'b2': tf.Variable(tf.random_normal([640])),
    'out': tf.Variable(tf.random_normal([10]))
}

# with tf.Graph().as_default():
with tf.variable_scope("model2"):
    x_plh = aeMLP_graph.get_tensor_by_name('x:0')
    output_conv = aeMLP_graph.get_tensor_by_name('lrelu_2/add:0')

    output_conv_sg = tf.stop_gradient(output_conv)
    print(output_conv_sg)

    output_conv_shape = output_conv_sg.get_shape().as_list()
    print(output_conv_shape)

    new_input = tf.reshape(output_conv_sg, [-1, 160])

    Y = tf.placeholder("float", [None, 10])
    # Hidden fully connected layer with 256 neurons
    layer_1 = tf.add(tf.matmul(new_input, weights['h1']), biases['b1'])
    # Hidden fully connected layer with 256 neurons
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    # Output fully connected layer with a neuron for each class
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    print(layer_1)
    print(layer_2)
    print(out_layer)
    y_pred = tf.nn.softmax(out_layer)

    correct_prediction = tf.equal(tf.argmax(y_pred,1), tf.argmax(Y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=Y))
    learning_rate = 0.001
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss_op)


# out_layer_mlp, y_pred = multilayer_perceptron(new_input)

model_2_variables_list = tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, 
scope="model2"
)

print(model_2_variables_list)

init2 = tf.variables_initializer(model_2_variables_list)

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
import matplotlib.pyplot as plt

# %%
# load MNIST as before
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
mean_img = np.mean(mnist.train.images, axis=0)

# Create saver
saver_new = tf.train.Saver()

with tf.Session() as sess:
    sess.run(init2)

     # %%
    # Fit all training data
    batch_size = 100
    n_epochs = 1
    for epoch_i in range(n_epochs):
        for batch_i in range(mnist.train.num_examples // batch_size):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            train = np.array([img - mean_img for img in batch_xs])
            _,c = sess.run([optimizer, loss_op], feed_dict={x_plh: train, Y: batch_ys})
        print(epoch_i, " || ", c)
        batch_xt, batch_yt = mnist.test.next_batch(batch_size)
        test = train = np.array([img - mean_img for img in batch_xt])
        acc = sess.run(accuracy, feed_dict = {x_plh: test, Y: batch_yt})
        print("Accuracy is: ", acc)

    save_path = saver_new.save(sess, "AutoEncoderCheckpoints/AutoEncoderClassifierMNIST.ckpt")
    print("Model saved in path: %s" % save_path)

以上两个代码都是可运行的,因此您将能够重新创建我遇到的错误。我已经阅读了一些有关可能冻结图形的文章,但是我不确定这是否是最佳解决方案。

1 个答案:

答案 0 :(得分:0)

如果您实际上包含了遇到的错误,则此文章对其他人会更有用。

第一个明显的问题是,导入图tf.train.import_meta_graph不会初始化变量。有关调用restore实际恢复变量值的示例,请参见https://www.tensorflow.org/api_docs/python/tf/train/import_meta_graph

从高层次上讲,由于您具有构建原始训练图的代码,因此可能不需要进行保存/恢复。解决此问题的一种可能方法是构建整个图形(AE和MLP)。首先训练AE(通过使用AE的训练操作调用sess.run),然后停止训练并训练MLP。您还可以构建单独的towers来共享所需的变量。我建议不进行保存/恢复的原因(除非您有其他用例)是因为依赖张量名称可能很脆弱。