例如,输入一维张量:
l_in = [1,1,2,2,3,4,5,5,1,3,5]
我要删除连续重复项,这意味着输出应为:
l_out = [1,2,3,4,5,1,3,5]
但是,tf.unique
函数仅返回唯一元素,表示最后三个元素也将被删除。 tf.unique
的输出是:
[1,2,3,4,5], [0,0,1,1,2,3,4,4,0,2,4] = tf.unique(l_in)
其中第二项是相应的ID。
有什么方法可以只删除连续的重复项,同时保留非重复和非唯一元素?
答案 0 :(得分:1)
对于一维张量,使用数组旋转/移位:
import tensorflow as tf
l_in = tf.constant([1,1,2,2,3,4,5,5,1,3,5])
l_left_shift = tf.concat((l_in[1:], [0]), axis=0)
mask_left_shift = tf.not_equal(l_in - l_left_shift, 0)
mask = tf.concat(([True], mask_left_shift[:-1]), axis=0)
l_out = tf.boolean_mask(l_in, mask)
with tf.Session() as sess:
print(sess.run(l_out))
# [1 2 3 4 5 1 3 5]
(即,想法是将每个元素与其右邻元素相减,如果相减结果为0,则屏蔽掉该邻元素)
答案 1 :(得分:-1)
不了解tensorflow,但是由于它似乎是一个简单的列表,因此可以很容易地从itertools中使用groupby:
from itertools import groupby
l_out = [x[0] for x in groupby(l_in)]
print(l_out) # prints [1, 2, 3, 4, 5, 1, 3, 5]
另请参阅:Removing elements that have consecutive duplicates in Python