在回顾有关多维输入和堆叠LSTM RNN的众多类似问题时,我没有找到一个示例,该示例列出了initial_state
占位符并遵循以下rnn_tuple_state
的维数。尝试的[lstm_num_layers, 2, None, lstm_num_cells, 2]
是这些示例(http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/,https://medium.com/@erikhallstrm/using-the-tensorflow-multilayered-lstm-api-f6e7da7bbe40)中代码的扩展,并在末尾添加了feature_dim
的额外维度,每次都针对多个值功能的步骤(这不起作用,但是由于ValueError
调用中的尺寸不匹配而产生了tensorflow.nn.dynamic_rnn
)。
time_steps = 10
feature_dim = 2
label_dim = 4
lstm_num_layers = 3
lstm_num_cells = 100
dropout_rate = 0.8
# None is to allow for variable size batches
features = tensorflow.placeholder(tensorflow.float32,
[None, time_steps, feature_dim])
labels = tensorflow.placeholder(tensorflow.float32, [None, label_dim])
cell = tensorflow.contrib.rnn.MultiRNNCell(
[tensorflow.contrib.rnn.LayerNormBasicLSTMCell(
lstm_num_cells,
dropout_keep_prob = dropout_rate)] * lstm_num_layers,
state_is_tuple = True)
# not sure of the dimensionality for the initial state
initial_state = tensorflow.placeholder(
tensorflow.float32,
[lstm_num_layers, 2, None, lstm_num_cells, feature_dim])
# which impacts these two lines as well
state_per_layer_list = tensorflow.unstack(initial_state, axis = 0)
rnn_tuple_state = tuple(
[tensorflow.contrib.rnn.LSTMStateTuple(
state_per_layer_list[i][0],
state_per_layer_list[i][1]) for i in range(lstm_num_layers)])
# also not sure if expanding the feature dimensions is correct here
outputs, state = tensorflow.nn.dynamic_rnn(
cell, tensorflow.expand_dims(features, -1),
initial_state = rnn_tuple_state)
最有用的是对以下情况的解释:
所以它的伪代码版本是:
# B, S, N, and R are undefined values for the purpose of this question
features = tensorflow.placeholder(tensorflow.float32, [B, S, N])
labels = tensorflow.placeholder(tensorflow.float32, [B, R])
...
如果我可以完成的话,我不会首先在这里问。提前致谢。欢迎您对有关最佳做法的任何评论。
答案 0 :(得分:0)
经过反复试验,无论特征的尺寸如何,以下代码都会生成堆叠的LSTM dynamic_rnn
:
time_steps = 10
feature_dim = 2
label_dim = 4
lstm_num_layers = 3
lstm_num_cells = 100
dropout_rate = 0.8
learning_rate = 0.001
features = tensorflow.placeholder(
tensorflow.float32, [None, time_steps, feature_dim])
labels = tensorflow.placeholder(
tensorflow.float32, [None, label_dim])
cell_list = []
for _ in range(lstm_num_layers):
cell_list.append(
tensorflow.contrib.rnn.LayerNormBasicLSTMCell(lstm_num_cells,
dropout_keep_prob=dropout_rate))
cell = tensorflow.contrib.rnn.MultiRNNCell(cell_list, state_is_tuple=True)
initial_state = tensorflow.placeholder(
tensorflow.float32, [lstm_num_layers, 2, None, lstm_num_cells])
state_per_layer_list = tensorflow.unstack(initial_state, axis=0)
rnn_tuple_state = tuple(
[tensorflow.contrib.rnn.LSTMStateTuple(
state_per_layer_list[i][0],
state_per_layer_list[i][1]) for i in range(lstm_num_layers)])
state_series, last_state = tensorflow.nn.dynamic_rnn(
cell=cell, inputs=features, initial_state=rnn_tuple_state)
hidden_layer_output = tensorflow.transpose(state_series, [1, 0, 2])
last_output = tensorflow.gather(hidden_layer_output, int(
hidden_layer_output.get_shape()[0]) - 1)
weights = tensorflow.Variable(tensorflow.random_normal(
[lstm_num_cells, int(labels.get_shape()[1])]))
biases = tensorflow.Variable(tensorflow.constant(
0.0, shape=[labels.get_shape()[1]]))
predictions = tensorflow.matmul(last_output, weights) + biases
mean_squared_error = tensorflow.reduce_mean(
tensorflow.square(predictions - labels))
minimize_error = tensorflow.train.RMSPropOptimizer(
learning_rate).minimize(mean_squared_error)
从许多众所周知的兔子洞之一开始此旅程的部分原因是,先前引用的示例对输出进行了重塑,以容纳分类器而不是回归器(这是我试图构建的)。由于这与特征维数无关,因此可以用作该用例的通用模板。