我正在写一类用于求解微分方程组的类,该类使用与另一个名为rhs(右手侧)的类组成的组合构造,该类应表示给定微分问题的功能。 在ode系统的情况下,rhs.function成为函数数组! (因此,我也在解决方案中使用了向量)我遇到的问题是如何将解决方案的数组传递给函数,我将在此处显示代码, Rhs类是:
class Rhs:
'''
class to define a differential problems
contains the dy/dt function and the initial value
in order to close the ode problem
'''
solution = None
def __init__(self, fnum : np.ndarray , t0: np.float, tf: np.float, y0 : np.array, n: int , fanal = None ):
'''
Input :
- fnum : Function f(t,y(t)) = dy/dt (numeric)
-
- Initial Time t0
- Final Time tf
- Initial value u0_i(t0) = y0_i(t0)
'''
self.func = fnum
Rhs.solution = fanal
self.t0 = t0
self.tf = tf
self.n = n
self.u0 = y0
def createArray(self):
'''
Create the Array time and f(time)
- the time array can be create now
- the solution array can be just initialize with the IV (array)
'''
self.t = np.linspace(self.t0, self.tf, self.n )
self.u = np.array([self.u0 for i in range(self.n) ])
return self.t,self.u
def f(self,ti,ui):
return np.array([function(ti,ui) for function in self.func])
该类在主文件(problem = Rhs(... args ...)
)中实例化
然后通过初始化此处报告的Euler课:
class Explicit:
'''
Solve the ODE using first order Foward difference
Explicit first order Method (Euler)
'''
solved = False # True if the method 'solve' was called without error
def __init__(self, dydt: rhs.Rhs, save : bool=True, _print: bool=False, filename : str=None):
'''
Initialize the Foward Euler solver
- dydt (to the super class) : RHS problem dy/dt = f(t,y(t)) t(0)=y0
- save : if True returns the 2 vector time and u = du/dt
'''
self._print = _print
self.save = save
self.file = filename
self.dydt = dydt
self.dt = (dydt.tf-dydt.t0)/dydt.n
def solve(self):
self.time, self.u = self.dydt.createArray()
for i in range(len(self.time)-1):
#for j in range(len(self.u[0,:])):
self.u[i+1] = self.u[i] + self.dt*self.dydt.f(self.time[i],self.u[i])
Explicit.solved = True
if self._print:
with open(self.file,'w') as f:
for i in range(len(self.time)):
f.write('%.4f %4f %4f %4f\n' %(self.time[i] ,self.u[i,0], self.u[i,1], self.u[i,2]))
if self.save:
return self.time,self.u
最后是简单的main函数:
func1 = lambda t,u : 10 * (u[1] - u[0])
func2 = lambda t,u : 28 * u[0] - u[1] - u[0] * u[2]
func3 = lambda t,u : -8/3 * u[2] + u[0]*u[1]
def main():
func = np.array([func1,func2,func3])
y0 = np.array([1.,0.,0.])
problem3 = rhs.Rhs(func,0.0,100.0,y0,1000)
t,u = problem3.createArray()
fwdeuler_p1 = euler.Explicit(problem3 , True,_print=True, filename ='lorentz.dat')
fet,feu = fwdeuler_p1.solve()
我希望lambda函数内部使用的语法很清楚:每个函数都代表一个函数,其中u [N]是未知函数。
我已经用C ++开发了一个类层次结构,并且工作正常(如果您对can find it here感兴趣)。
我在python程序中遇到的错误是:
drive.py:31: RuntimeWarning: overflow encountered in double_scalars
func2 = lambda t,u : 28 * u[0] - u[1] - u[0] * u[2]
drive.py:32: RuntimeWarning: overflow encountered in double_scalars
func3 = lambda t,u : -8/3 * u[2] + u[0]*u[1]
drive.py:31: RuntimeWarning: invalid value encountered in double_scalars
func2 = lambda t,u : 28 * u[0] - u[1] - u[0] * u[2]
/home/marco/Programming/Python/Numeric/OdeSystem/euler.py:77: RuntimeWarning: invalid value encountered in add
self.u[i+1] = self.u[i] + self.dt*self.dydt.f(self.time[i],self.u[i])
编辑,非常抱歉!纠正错误现在是正确的。
编辑我解决了使时间缩短的问题:)感谢所有尝试帮助我的人