为了减少花费在收集count
行的DataFrame
行中的时间上,正在调用RDD.countApproximate()
。它具有以下签名:
def countApprox(
timeout: Long,
confidence: Double = 0.95): PartialResult[BoundedDouble] = withScope {
我试图将输出计算限制为60秒。还请注意0.10
的非常低准确性要求:
val waitSecs = 60
val cnt = inputDf.rdd.countApprox(waitSecs * 1000, 0.10).getFinalValue.mean
但是实际时间是.. 17分钟 ??
该时间几乎与最初生成数据所需的时间相同( 19 分钟)!
那么-此api的用途是什么:有什么方法可以使它实际保存 exact 时间计算中有意义的部分?
TL; DR (请参阅接受的答案):使用initialValue
代替getFinalValue
答案 0 :(得分:7)
请注意Hello World! This is test one!
定义中的返回类型。这是部分结果。
approxCount
现在,请注意其用法:
def countApprox(
timeout: Long,
confidence: Double = 0.95): PartialResult[BoundedDouble] = withScope {
根据spark scala doc,getFinalValue
是阻止方法,这意味着它将等待完整的操作完成。
而initialValue
可以在指定的超时时间内获取。因此,以下代码段在超时后将不会阻止进一步的操作,
val waitSecs = 60
val cnt = inputDf.rdd.countApprox(waitSecs * 1000, 0.10).**getFinalValue**.mean
请注意,使用val waitSecs = 60
val cnt = inputDf.rdd.countApprox(waitSecs * 1000, 0.10).initialValue.mean
的不利之处在于,即使获得该值,它也会继续计数,直到获得您使用countApprox(timeout, confidence).initialValue
获得的最终计数为止,并且仍将保留资源直到操作完成。
现在,此API的使用不会在计数操作时被阻塞。
现在让我们验证我们对spark2-shell进行非阻塞操作的假设。让我们创建随机数据帧,并对getFinalValue
执行count
,approxCount
,对getFinalValue
执行approxCount
:
initialValue
让我们看看spark ui和spark-shell,所有3个操作都花了相同的时间:
scala> val schema = StructType((0 to 10).map(n => StructField(s"column_$n", StringType)))
schema: org.apache.spark.sql.types.StructType = StructType(StructField(column_0,StringType,true), StructField(column_1,StringType,true), StructField(column_2,StringType,true), StructField(column_3,StringType,true), StructField(column_4,StringType,true), StructField(column_5,StringType,true), StructField(column_6,StringType,true), StructField(column_7,StringType,true), StructField(column_8,StringType,true), StructField(column_9,StringType,true), StructField(column_10,StringType,true))
scala> val rows = spark.sparkContext.parallelize(Seq[Row](), 100).mapPartitions { _ => { Range(0, 100000).map(m => Row(schema.map(_ => Random.alphanumeric.filter(_.isLower).head.toString).toList: _*)).iterator } }
rows: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[1] at mapPartitions at <console>:32
scala> val inputDf = spark.sqlContext.createDataFrame(rows, schema)
inputDf: org.apache.spark.sql.DataFrame = [column_0: string, column_1: string ... 9 more fields]
//Please note that cnt will be displayed only when all tasks are completed
scala> val cnt = inputDf.rdd.count
cnt: Long = 10000000
scala> val waitSecs = 60
waitSecs: Int = 60
//cntApproxFinal will be displayed only when all tasks are completed.
scala> val cntApprxFinal = inputDf.rdd.countApprox(waitSecs * 1000, 0.10).getFinalValue.mean
[Stage 1:======================================================> (98 + 2) / 100]cntApprxFinal: Double = 1.0E7
scala> val waitSecs = 60
waitSecs: Int = 60
//Please note that cntApprxInitila in this case, will be displayed exactly after timeout duration. In this case 80 tasks were completed within timeout and it displayed the value of variable. Even after displaying the variable value, it continued will all the remaining tasks
scala> val cntApprxInitial = inputDf.rdd.countApprox(waitSecs * 1000, 0.10).initialValue.mean
[Stage 2:============================================> (80 + 4) / 100]cntApprxInitial: Double = 1.0E7
[Stage 2:=======================================================>(99 + 1) / 100]
在完成所有任务之前可用。
希望,这会有所帮助!