我已经定义了一个python类,以便计算差分方程系统的解。 为此,我定义了一个名为Rhs(右侧和右侧)的类,该类应表示dy / dt(i-th)的右侧和右侧,该类包含单个浮点值(初始时间,初始值,最终时间)和一个函数(函数数组)以定义此数组,我仅定义了3个lambda函数,该函数表示等式(i)并创建此函数的np.array
func1 = lambda t,u : 10 * (u[1] - u[0])
func2 = lambda t,u : 28 * u[0] - u[1] - u[0] * u[2]
func3 = lambda t,u : -8/3 * u[2] + u[0]*u[1]
然后以这种方式传递给rhs类:
func = np.array([func1,func2,func3])
y0 = np.array([1.,0.,0.])
problem3 = rhs.Rhs(func,0.0,100.0,y0,1000)
Rhs类是这样的:
class Rhs:
def __init__(self, fnum : np.ndarray , t0: np.float, tf: np.float, y0 : np.array, n: int , fanal = None ):
self.func = fnum
Rhs.solution = fanal
self.t0 = t0
self.tf = tf
self.n = n
self.u0 = y0
def createArray(self):
'''
Create the Array time and f(time)
- the time array can be create now
- the solution array can be just initialize with the IV
'''
self.t = np.linspace(self.t0, self.tf, self.n )
self.u = np.array([self.u0 for i in range(self.n) ])
return self.t,self.u
def f(self,ti,ui):
return self.func(ti,ui)
def Df(self,ti,ui):
eps = 10e-6
return ((self.func(ti,ui)+eps) - self.f(ti,ui))/eps
这里的问题是当euler类调用函数f
class Explicit:
def __init__(self, dydt: rhs.Rhs, save : bool=True, _print: bool=False, filename : str=None):
self.dydt = dydt
self.dt = (dydt.tf-dydt.t0)/dydt.n
self._print = _print
def solve(self):
self.time, self.u = self.dydt.createArray()
for i in range(len(self.time)-1):
self.u[i+1] = self.u[i] + self.dt*self.dydt.f(self.time[i],self.u[i])
Explicit.solved = True
print('here')
if self._print:
with open(filename) as f:
print('here')
for i in range(len(self.u)):
f.write('%.4f %4f %4f %4f' %(self.time ,self.u[0,i], self.u[1], self.u[2]))
if self.save:
return self.time,self.u
这里的问题是:这是将shape = 1000,3的向量u传递给该函数的正确方法(以便使用在lambda函数系统中应用于3向量索引的3函数来工作。 )我不明白的是为什么在C ++中我没有这个问题 在这里看看:all the class hierarchy我不知道用什么方式计算这个东西
这是错误:
Traceback (most recent call last):
File "drive.py", line 94, in <module>
main()
File "drive.py", line 63, in main
fet,feu = fwdeuler_p1.solve()
File "/home/marco/Programming/Python/Numeric/OdeSystem/euler.py", line 77, in solve
self.u[i+1] = self.u[i] + self.dt*self.dydt.f(self.time[i],self.u[i])
File "/home/marco/Programming/Python/Numeric/OdeSystem/rhs.py", line 44, in f
return self.func(ti,ui)
TypeError: 'numpy.ndarray' object is not callable
编辑:感谢您的回复..不幸的是,没有:( 这是错误消息:
drive.py:31: RuntimeWarning: overflow encountered in double_scalars
func2 = lambda t,u : 28 * u[0] - u[1] - u[0] * u[2]
drive.py:32: RuntimeWarning: overflow encountered in double_scalars
func3 = lambda t,u : -8/3 * u[2] + u[0]*u[1]
drive.py:31: RuntimeWarning: invalid value encountered in double_scalars
func2 = lambda t,u : 28 * u[0] - u[1] - u[0] * u[2]
/home/marco/Programming/Python/Numeric/OdeSystem/euler.py:77: RuntimeWarning: invalid value encountered in add
self.u[i+1] = self.u[i] + self.dt*self.dydt.f(self.time[i],self.u[i])
非常感谢您的帮助!您有其他解决方案吗?
@LutzL我不需要复制u0,self.u0是shape = 3,self.u应该是1000,3(1000行),这3列分别代表了u[0],u[1],u[2]
方程(函数数组),顺便说一句,如果我增加步数(减少增量)
答案 0 :(得分:1)
这应该有效
def f(self,ti,ui):
return np.array([function(ti,ui) for function in self.func])
答案 1 :(得分:0)
self.u = np.array([self.u0 for i in range(self.n) ])
还应该给您带来问题,因为这会产生一个以u0
作为行而不是预期副本的矩阵或2d数组。你可能想要
self.u = np.array([self.u0[i] for i in range(self.n) ])
或更简单
self.u = self.u0.copy()