针对Python和OpenCv运行此代码。我想要做的是将数据存储/测试该工具正在检测的所有汽车的所有图像。 使用
运行我的代码python3 car_detection y0d$ python3 build_car_dataset.py -c cars.xml -o dataset/test
因此,当我检测到脸部并将矩形放在脸部时,我创建了一个if函数,该函数表示如果识别出该脸部并在图像上具有矩形,那么请将该脸部的图片保存到我想要的位置输出
if rects:
p = os.path.sep.join([args["output"], "{}.png".format(str(total).zfill(5))])
cv2.imwrite(p, orig)
total += 1
所以我得到的错误是:ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
我该怎么办?预先谢谢你!
我的完整代码是:
# USAGE
# python3 build_car_dataset.py --cascade haarcascade_frontalface_default.xml --output dataset/test
# python3 build_face_dataset.py -c haarcascade_licence_plate_rus_16stages_original.xml -o dataset/test
#python3 build_face_dataset.py -c haarcascade_licence_plate_rus_16stages_original.xml -o dataset/test
#python3 build_car_dataset.py -c cars.xml -o dataset/test
from imutils.video import VideoStream
import argparse, imutils, time, cv2, os
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--cascade", required=True,
help = "path to where the face cascade resides")
ap.add_argument("-o", "--output", required=True,
help="path to output directory")
args = vars(ap.parse_args())
# load OpenCV's Haar cascade for face detection from disk
detector = cv2.CascadeClassifier(args["cascade"])
# initialize the video stream, allow the camera sensor to warm up and initialize the total number of example faces written to disk thus far
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
# vs = VideoStream(usePiCamera=True).start()
time.sleep(2.0)
total = 0
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream, clone it, (just in case we want to write it to disk), and then resize the frame
# so we can apply face detection faster
frame = vs.read()
orig = frame.copy()
frame = imutils.resize(frame, width=400)
# detect faces in the grayscale frame
rects = detector.detectMultiScale(
cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), scaleFactor=1.1,
minNeighbors=5, minSize=(30, 30))
# loop over the face detections and draw them on the frame
for (x, y, w, h) in rects:
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
if rects:
p = os.path.sep.join([args["output"], "{}.png".format(str(total).zfill(5))])
cv2.imwrite(p, orig)
total += 1
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
print("[INFO] {} face images stored".format(total))
print("[INFO] cleaning up...")
cv2.destroyAllWindows()
vs.stop()
答案 0 :(得分:1)
替换:
if rects:
具有:
if rects is not None :
或:
if rects != None :
你会很高兴=)
我的意思是,您仍然无法检测到汽车,但是至少错误会消失。对于汽车检测,我建议使用CNN(卷积神经网络),对于“ YOLO CNN”或“ SSD CNN”使用google -已有许多检测汽车的项目,您可以轻松地为自己找到一个良好的开端
答案 1 :(得分:0)
让我们说rects = [[1, 2, 3, 4], [3,4, 5, 6]]
for (x, y, w, h) in rects:
print("I got here:", x, y, w, h)
将打印:
I got here: 1 2 3 4
I got here: 3 4 5 6
但是如果rects = None
,您会收到错误消息'NoneType' object is not iterable
如果rects = []
没有输出,则循环内无任何运行。
基本上,我的意思是,由于您的if rects
代码位于通过rects
循环的循环中,因此您可以确保rects
中包含信息,因为您的代码需要rects
才能实现非空迭代。
您可能真正想做的是在循环之前检查if rects
。要成为Pythonic,我们会请求宽恕而不是允许:
rects = None
try:
for (x, y, w, h) in rects:
print("I got here:", x, y, w, h)
except TypeError:
print("no rects")
# no rects
请注意,您的错误与大部分代码无关。确保尝试将问题减少到最小的可重现的示例,该示例具有相同的问题。通常,这样做有助于解决问题。