Python Pandas根据在另一个数据框中的查找将列添加到数据框

时间:2018-07-07 05:15:11

标签: pandas dataframe

对于每个NBA球队,我的首场比赛日期和最后一场比赛都有1个DF。我在每场比赛前后都有另外一个DF w /球队的ELO。我想在团队的ELO以及指定的第一个和最后一个日期向DF1添加2列。对于第一列中的日期,我想要ELO1,第二列中的日期我想要ELO2。如果有某种方法可以将2个ELO的差直接变成1列,那会更好,因为这最终我将要计算。

DF1:

         first      last
team        

ATL 2017-10-18  2018-04-10

BOS 2017-10-17  2018-04-11

BRK 2017-10-18  2018-04-11

CHI 2017-10-19  2018-04-11
[...]

DF2:

          date      team       ELO_before        ELO_after
65782 2017-10-18  ATL        1648.000000  1650.308911

65783 2017-10-17  BOS        1761.000000  1753.884111

65784 2017-10-18  BRK        1427.000000  1439.104231

65785 2017-10-19  CHI        1458.000000  1464.397752

65786 2018-04-10  ATL        1406.000000  1411.729285
[...]

预先感谢!

编辑-我想要的结果数据框如下所示:

DF3:

       first        last      ELO_before    ELO_after
team        

ATL 2017-10-18  2018-04-10   1648.000000   1411.729285

BOS 2017-10-17  2018-04-11   1761.000000   [Elo2 for last game]

BRK 2017-10-18  2018-04-11   1427.000000   [Elo2 for last game]

CHI 2017-10-19  2018-04-11   1458.000000   [Elo2 for last game]

1 个答案:

答案 0 :(得分:1)

您可以使用pandas.DataFrame.merge

import pandas as pd

# frames from the question
df1 = pd.DataFrame(data={
  'team': ['ATL', 'BOS', 'BRK', 'CHI'],
  'first': ['2017-10-18', '2017-10-17', '2017-10-18', '2017-10-19'],
  'last': ['2018-04-10', '2018-04-11', '2018-04-11', '2018-04-11']
}).set_index('team')

df2 = pd.DataFrame(data={
  'date': ['2017-10-18', '2017-10-17', '2017-10-18', '2017-10-19', '2018-04-10'],
  'team': ['ATL', 'BOS', 'BRK', 'CHI', 'ATL'],
  'ELO_before': [1648.0, 1761.0, 1427.0, 1458.0, 1406.0],
  'ELO_after': [1650.308911, 1753.884111, 1439.104231, 1464.397752, 1411.729285]
})

# merge on first and last
df1.reset_index(inplace=True)
df3 = df1.merge(df2.drop('ELO_after', axis=1), how='left', left_on=['team', 'first'], right_on=['team', 'date']).drop(['date'], axis=1)
df3 = df3.merge(df2.drop('ELO_before', axis=1), how='left', left_on=['team', 'last'], right_on=['team', 'date']).drop(['date'], axis=1)

# calculate the differences
df3['ELO_difference'] = df3['ELO_after'] - df3['ELO_before']
df3.set_index('team', inplace=True)