如何从JSON编码的列中提取值?

时间:2018-07-06 20:58:23

标签: scala apache-spark apache-spark-sql

我有一个具有以下架构的Spark数据框。

[{ "map": {
    "completed-stages": 1,
    "total-stages": 1 },
    "rec": "test-plan",
    "status": {
        "state": "SUCCESS"
    }
  },
  { "map": {
    "completed-stages": 1,
    "total-stages": 1 },
    "rec": "test-proc",
    "status": {
        "state": "FAILED"
  }
}]

我想将其转换为具有以下架构的另一个DF     [{"rec": "test-plan", "status": "SUCCESS"}, {"rec": "test-pROC", "status": "FAILED"}]

我已经编写了以下代码,但无法编译,并且抱怨编码错误。

val fdf = DF.map(f => {
        val listCommands = f.get(0).asInstanceOf[WrappedArray[Map[String, Any]]]
        val m = listCommands.map(h => {
            var rec = "none"
            var status = "none"

            if(h.exists("status" == "state" -> _)) {
                status = (h.get("status") match {
                    case Some(x) => x.asInstanceOf[HashMap[String, String]].getOrElse("state", "none")
                    case _ => "none"
                })

                if(h.contains("rec")) {
                    rec = (h.get("rec") match {
                        case Some(x: String) => x
                        case _ => "none"
                    })
                }
            }

          Map("status"->status, "rec"->rec)
        })

      val rm = m.flatten
      rm
    })

请提出正确的方法。

2 个答案:

答案 0 :(得分:1)

这将是棘手的,因为JSON的顶级元素不相同,即您有map1map2,因此架构不一致。我会与“数据生产者”对话,并请求进行更改,因此命令的名称由单独的元素描述。


鉴于DataFrame的架构如下:

scala> commands.printSchema
root
 |-- commands: array (nullable = true)
 |    |-- element: string (containsNull = true)

以及其中的元素(行)数:

scala> commands.count
res1: Long = 1

首先必须explodecommands元素数组,然后才能访问感兴趣的字段。

// 1. Explode the array
val commandsExploded = commands.select(explode($"commands") as "command")
scala> commandsExploded.count
res2: Long = 2

让我们创建JSON编码记录的架构。一种可能如下。

// Note that it accepts map1 and map2 fields
import org.apache.spark.sql.types._
val schema = StructType(
  StructField("map1",
    StructType(
      StructField("completed-stages", LongType, true) ::
      StructField("total-stages", LongType, true) :: Nil), true) ::
  StructField("map2",
    StructType(
      StructField("completed-stages", LongType, true) ::
      StructField("total-stages", LongType, true) :: Nil), true) ::
  StructField("rec", StringType,true) ::
  StructField("status", StructType(
    StructField("state", StringType, true) :: Nil), true
  ) :: Nil)

有了这一点,您应该使用from_json标准函数,该函数接受一列包含JSON编码的字符串和模式的文件。

val commands = commandsExploded.select(from_json($"command", schema) as "command")
scala> commands.show(truncate = false)
+-------------------------------+
|command                        |
+-------------------------------+
|[[1, 1],, test-plan, [SUCCESS]]|
|[, [1, 1], test-proc, [FAILED]]|
+-------------------------------+

让我们看一下commands数据集的架构。

scala> commands.printSchema
root
 |-- command: struct (nullable = true)
 |    |-- map1: struct (nullable = true)
 |    |    |-- completed-stages: long (nullable = true)
 |    |    |-- total-stages: long (nullable = true)
 |    |-- map2: struct (nullable = true)
 |    |    |-- completed-stages: long (nullable = true)
 |    |    |-- total-stages: long (nullable = true)
 |    |-- rec: string (nullable = true)
 |    |-- status: struct (nullable = true)
 |    |    |-- state: string (nullable = true)

recstatus之类的复杂字段是.可访问的结构。

val recs = commands.select(
  $"command.rec" as "rec",
  $"command.status.state" as "status")

scala> recs.show
+---------+-------+
|      rec| status|
+---------+-------+
|test-plan|SUCCESS|
|test-proc| FAILED|
+---------+-------+

将其转换为单记录JSON编码的数据集需要Dataset.toJSON,后跟collect_list标准函数。

val result = recs.toJSON.agg(collect_list("value"))
scala> result.show(truncate = false)
+-------------------------------------------------------------------------------+
|collect_list(value)                                                            |
+-------------------------------------------------------------------------------+
|[{"rec":"test-plan","status":"SUCCESS"}, {"rec":"test-proc","status":"FAILED"}]|
+-------------------------------------------------------------------------------+

答案 1 :(得分:0)

您没有提供df的架构,因此以下内容可能对您不起作用。 我将json样本保存在test.json文件中,并使用val df=spark.read.option("multiLine",true).json("test.json")进行读取,在这种情况下,您只需df.select($"rec",$"status.state").write.json("test1.json")即可获取json