我想通过对具有匹配变量的列(而不是附加列)求和来将一组数据帧组合为一个数据帧。
例如,给定
df1 <- data.frame(A = c(0,0,1,1,1,2,2), B = c(1,2,1,2,3,1,5), x = c(2,3,1,5,3,7,0))
df2 <- data.frame(A = c(0,1,1,2,2,2), B = c(1,1,3,2,4,5), x = c(4,8,4,1,0,3))
df3 <- data.frame(A = c(0,1,2), B = c(5,4,2), x = c(5,3,1))
我想用"A"
和"B"
进行匹配,并将"x"
的值相加。对于此示例,我可以得到如下所示的期望结果:
library(plyr)
library(dplyr)
# rename columns so that join_all preserves them all:
colnames(df1)[3] <- "x1"
colnames(df2)[3] <- "x2"
colnames(df3)[3] <- "x3"
# join the data frames by matching "A" and "B" values:
res <- join_all(list(df1, df2, df3), by = c("A", "B"), type = "full")
# get the sums and drop superfluous columns:
arrange(res, A, B) %>%
rowwise() %>%
mutate(x = sum(x1, x2, x3, na.rm = TRUE)) %>%
select(A, B, x)
结果:
A B x
<dbl> <dbl> <dbl>
1 0 1 6
2 0 2 3
3 0 5 5
4 1 1 9
5 1 2 5
6 1 3 7
7 1 4 3
8 2 1 7
9 2 2 2
10 2 4 0
11 2 5 3
更通用的解决方案是
library(dplyr)
# function to get the desired result for two data frames:
my_merge <- function(df1, df2)
{
m1 <- merge(df1, df2, by = c("A", "B"), all = TRUE)
m1 <- rowwise(res) %>%
mutate(x = sum(x.x, x.y, na.rm = TRUE)) %>%
select(A, B, x)
return(m1)
}
l1 <- list(df2, df3) # omit the first data frame
res <- df1 # initial value of the result
for(df in l1) res <- my_merge(res, df) # call the function repeatedly
是否存在用于组合大量数据帧的更有效的选择?理想情况下,它应该是递归的(即,最好在计算总和之前不要将所有数据帧都合并为一个大数据帧)。
答案 0 :(得分:2)
一个更简单的选择是绑定数据集的行,然后按感兴趣的列分组,并通过获取'x'的sum
来获得汇总输出
library(tidyverse)
bind_rows(df1, df2, df3) %>%
group_by(A, B) %>%
summarise(x = sum(x))
# A tibble: 11 x 3
# Groups: A [?]
# A B x
# <dbl> <dbl> <dbl>
# 1 0 1 6
# 2 0 2 3
# 3 0 5 5
# 4 1 1 9
# 5 1 2 5
# 6 1 3 7
# 7 1 4 3
# 8 2 1 7
# 9 2 2 2
#10 2 4 0
#11 2 5 3
如果全局环境中有许多对象,其模式为"df"
,后跟一些数字
mget(ls(pattern= "^df\\d+")) %>%
bind_rows %>%
group_by(A, B) %>%
summarise(x = sum(x))
正如OP提到的memory
约束,如果我们先进行join
,然后将rowSums
或+
与reduce
一起使用,那将会更多高效
mget(ls(pattern= "^df\\d+")) %>%
reduce(full_join, by = c("A", "B")) %>%
transmute(A, B, x = rowSums(.[3:5], na.rm = TRUE)) %>%
arrange(A, B)
# A B x
#1 0 1 6
#2 0 2 3
#3 0 5 5
#4 1 1 9
#5 1 2 5
#6 1 3 7
#7 1 4 3
#8 2 1 7
#9 2 2 2
#10 2 4 0
#11 2 5 3
这也可以通过data.table
library(data.table)
rbindlist(mget(ls(pattern= "^df\\d+")))[, .(x = sum(x)), by = .(A, B)]
答案 1 :(得分:2)
理想情况下,它应该是递归的(即,最好不要在计算总和之前将所有数据帧合并为一个大数据帧)。
如果您的内存有限并且愿意牺牲速度(与@akrun的data.table方法相比),请一次循环使用一个表:
library(data.table)
tabs = c("df1", "df2", "df3")
# enumerate all combos for the results table
# initializing sum to 0
res = CJ(A = 0:2, B = 1:5, x = 0)
# loop over tabs, adding on
for (i in seq_along(tabs)){
tab = get(tabs[[i]])
res[tab, on=.(A, B), x := x + i.x][]
rm(tab)
}
如果需要从磁盘读取表,请将tabs
更改为文件名,将get
更改为fread
或其他功能。
我怀疑您是否可以在内存中容纳所有表,但不能同时将它们的rbind
版复制到一起。
同样(感谢@akrun的评论),成对使用他的方法:
res = data.table(get(tabs[[1]]))[0L]
for (i in seq_along(tabs)){
tab = get(tabs[[i]])
res = rbind(res, tab)[, .(x = sum(x)), by=.(A,B)]
rm(tab)
}