我对TensorFlow和图像分类还很陌生,所以我可能缺少关键知识,这可能就是我面临此问题的原因。
我已经使用ResNet50
库在TensorFlow中建立了ImageNet
模型用于狗品种的图像分类,并且我成功地训练了可以检测各种狗品种的神经网络。
我现在想将一只狗的随机图像传递给我的模型,以便它吐出关于它认为狗的品种的输出。但是,当我运行此功能dog_breed_predictor("dogImages/dogImages/valid/016.Beagle/Beagle_01126.jpg")
时,尝试执行第expected global_average_pooling2d_1_input to have shape (1, 1, 2048) but got array with shape (7, 7, 2048)
行时出现错误Resnet50_model.predict(bottleneck_feature)
,我不知道该如何解决。
这是代码。我提供了我认为与问题有关的所有信息。
#import tensorflow as tf, etc.
from sklearn.datasets import load_files
np_utils = tf.keras.utils
# define function to load train, test, and validation datasets
def load_dataset(path):
data = load_files(path)
dog_files = np.array(data['filenames'])
dog_targets = np_utils.to_categorical(np.array(data['target']), 133)
return dog_files, dog_targets
# load train, test, and validation datasets
train_files, train_targets = load_dataset('dogImages/dogImages/train')
valid_files, valid_targets = load_dataset('dogImages/dogImages/valid')
test_files, test_targets = load_dataset('dogImages/dogImages/test')
#define Resnet50 model
Resnet50_model = ResNet50(weights="imagenet")
def path_to_tensor(img_path):
#loads RGB image as PIL.Image.Image type
img = image.load_img(img_path, target_size=(224, 224))
#convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)
x = image.img_to_array(img)
#convert 3D tensor into 4D tensor with shape (1, 224, 224, 3)
return np.expand_dims(x, axis=0)
from keras.applications.resnet50 import preprocess_input, decode_predictions
def ResNet50_predict_labels(img_path):
#returns prediction vector for image located at img_path
img = preprocess_input(path_to_tensor(img_path))
return np.argmax(Resnet50_model.predict(img))
###returns True if a dog is detected in the image stored at img_path
def dog_detector(img_path):
prediction = ResNet50_predict_labels(img_path)
return ((prediction <= 268) & (prediction >= 151))
###Obtain bottleneck features from another pre-trained CNN
bottleneck_features = np.load("bottleneck_features/DogResnet50Data.npz")
train_DogResnet50 = bottleneck_features["train"]
valid_DogResnet50 = bottleneck_features["valid"]
test_DogResnet50 = bottleneck_features["test"]
###Define your architecture
Resnet50_model = tf.keras.Sequential()
Resnet50_model.add(tf.keras.layers.GlobalAveragePooling2D(input_shape=train_DogResnet50.shape[1:]))
Resnet50_model.add(tf.contrib.keras.layers.Dense(133, activation="softmax"))
Resnet50_model.summary()
###Compile the model
Resnet50_model.compile(loss="categorical_crossentropy", optimizer="rmsprop", metrics=["accuracy"])
###Train the model
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath="saved_models/weights.best.ResNet50.hdf5",
verbose=1, save_best_only=True)
Resnet50_model.fit(train_DogResnet50, train_targets,
validation_data=(valid_DogResnet50, valid_targets),
epochs=20, batch_size=20, callbacks=[checkpointer])
###Load the model weights with the best validation loss.
Resnet50_model.load_weights("saved_models/weights.best.ResNet50.hdf5")
###Calculate classification accuracy on the test dataset
Resnet50_predictions = [np.argmax(Resnet50_model.predict(np.expand_dims(feature, axis=0))) for feature in test_DogResnet50]
#Report test accuracy
test_accuracy = 100*np.sum(np.array(Resnet50_predictions)==np.argmax(test_targets, axis=1))/len(Resnet50_predictions)
print("Test accuracy: %.4f%%" % test_accuracy)
from extract_bottleneck_features import * #separate .py file
def dog_breed(img_path):
#extract bottleneck features
bottleneck_feature = extract_Resnet50(path_to_tensor(img_path))
#obtain predicted vector
predicted_vector = Resnet50_model.predict(bottleneck_feature)
#return dog breed that is predicted by the model
return dog_names[np.argmax(predicted_vector)]
def dog_breed_predictor(img_path):
#determine the predicted dog breed
breed = dog_breed(img_path)
#display the image
img = cv2.imread(img_path)
cv_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(cv_rgb)
plt.show()
#display relevant predictor result
if dog_detector(img_path):
print("This is a dog and its breed is: " + str(breed))
elif face_detector(img_path):
print("This is a human but it looks like a: " + str(breed))
else:
print("I don't know what this is.")
dog_breed_predictor("dogImages/dogImages/valid/016.Beagle/Beagle_01126.jpg") #shape error occurs here
extract_bottleneck_features.py中的函数:
def extract_Resnet50(tensor):
from keras.applications.resnet50 import ResNet50, preprocess_input
return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
答案 0 :(得分:0)
为什么在调用ResNet时不使用pooling == 'avg'
或pooling == 'max'
和include_top=False
作为参数。它将照顾您的池化层。使用这些参数调用函数后,可以删除池层。
来自source code:
if include_top:
x = Flatten()(x)
x = Dense(classes, activation='softmax', name='fc1000')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x)
答案 1 :(得分:-1)
首先,有两个名为Resnet50_model
的模型。一种是ResNet50()
将图片归类为狗,另一种是您设置的
###Define your architecture
Resnet50_model = tf.keras.Sequential()
Resnet50_model.add(tf.keras.layers.GlobalAveragePooling2D(input_shape=train_DogResnet50.shape[1:]))
Resnet50_model.add(tf.contrib.keras.layers.Dense(133, activation="softmax"))
正在从ResNet50()
进行分类以归类为犬种,您应该将其重命名。
从bottleneck_features/DogResnet50Data.npz
加载的尺寸为(1,1,2048)的数据,而从extract_Resnet50(path_to_tensor(img_path))
加载的尺寸为(1,2048)的数据可以编辑为
def Resnet50_predict_breed(img_path):
# extract bottleneck features
bottleneck_feature = np.expand_dims(np.expand_dims(
extract_Resnet50(path_to_tensor(img_path)), axis=0), axis=0)
...
或者您可以通过以下方式获得自己的bottleneck_features
def paths_to_tensor(img_paths):
list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]
return np.vstack(list_of_tensors)
def extract_Resnet50(tensor):
from keras.applications.resnet50 import ResNet50, preprocess_input
ResNet50(weights='imagenet', input_shape=(224,224,3), pooling='avg', include_top=False).predict(preprocess_input(tensor))
train_Resnet50 = extract_Resnet50(paths_to_tensor(train_files))[:,np.newaxis,np.newaxis,:]
valid_Resnet50 = extract_Resnet50(paths_to_tensor(valid_files))[:,np.newaxis,np.newaxis,:]
test_Resnet50 = extract_Resnet50(paths_to_tensor(test_files))[:,np.newaxis,np.newaxis,:]
def Resnet50_predict_breed(img_path):
# extract bottleneck features
bottleneck_feature = np.expand_dims(np.expand_dims(
extract_Resnet50(path_to_tensor(img_path)), axis=0), axis=0)
...