将大型csv加载到数据框中,同时保持列结构

时间:2018-07-06 10:27:50

标签: r csv dataframe large-data

我正在尝试将大文件(总计3500万行)的文件夹加载到R中,并将其作为数据框。

尽管使用以下代码确实花了10/15分钟,但我设法将数据加载到其中,但是问题是csv的所有列都变成了1列。这是我的代码:

# Load files

temp = list.files(path ="D:/", pattern="*.csv", full.names = TRUE)
myfiles = lapply(temp, read.delim)

# Make Dataframe

df_list = lapply(seq(length(myfiles)),function(i){
  df = as.data.frame(myfiles[i], stringsAsFactors = FALSE)
})

head(do.call(bind_rows,df_list))

df = as.data.frame(data.table::rbindlist(df_list, use.names=TRUE, fill=TRUE))

csv的列可能类似于:

|A|B|C|D1|E|

但是在我的数据框中输出如下:

|A.B.C.D1..E|

任何解决此维护列问题的帮助都将得到帮助。

1 个答案:

答案 0 :(得分:1)

您可以使用fread()来更快地读取csv,并使用rbindlist()来组合列表中的数据。两者都来自data.table软件包。

library(data.table)


# Load files
temp = list.files(path ="D:/", pattern="*.csv", full.names = TRUE)

使用fread()代替read.delim()

myfiles = lapply(temp, fread)

由于没有提供可重复的数据:

df_list <- lapply(1:5, function(x) {
  set.seed(x)

  rows <- sample(1:32, 2)
  mtcars[rows, ]
})

合并列表中的数据:

df <- rbindlist(df_list)

这是结果:

     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
 1: 22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
 2: 16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
 3: 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
 4: 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
 5: 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
 6: 27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
 7: 30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
 8: 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
 9: 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
10: 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2