我在创建清晰简洁的代码时遇到了麻烦,该代码使我可以执行各种命令来执行各种不同的操作。因此,例如,在我正在使用的N型身体模拟器中,我想要的功能是用户可以输入诸如tele pos [x] [y] [z]
或tele celobj [celestial object name]
之类的命令。
要做到这一点,我根据空格的位置将输入字符串分成多个令牌数组。然后,我使用一系列switch语句,以便在一个switch语句层中处理第一个单词(tele
),然后在第二个单词(pos
或celobj
)中处理第二层switch语句。然后,相应地处理下一个标记。在所有这些不同的层中,我检查用户是否输入了有效的单词数,以避免超出范围的异常。
我的代码可以正常工作,但是显然很难阅读并且过于复杂。我不是在寻找帮助自己的代码,而是一种用于组织命令系统或以最佳方式设置逻辑的概念性策略。
我已经包括了源代码,以防万一,但是我希望我的描述足够清楚。
public static void process(String cmd) {
String tokenNotFound = "Token not recognized...";
String notEnoughInfo = "Not enough info given. Please specify...";
String unableToParse = "Unable to parse number...";
String[] tokens = cmd.toLowerCase().split("\\s+");
switch (tokens[0]) {
case "close":
run = false;
break;
case "toggle":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "render":
render = !render;
System.out.println("Render setting set to " + render);
break;
case "physics":
updatePhysics = !updatePhysics;
System.out.println("Physics update setting set to " + updatePhysics);
break;
case "trails":
showTrails = !showTrails;
System.out.println("Show trails setting set to " + showTrails);
break;
case "constellations":
showConstellations = !showConstellations;
System.out.println("Show constellations setting set to " + showConstellations);
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "get":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "fps":
System.out.println("FPS: " + realFPS);
break;
case "ups":
System.out.println("UPS: " + realUPS);
break;
case "cps":
System.out.println("CPS: " + realCPS);
break;
case "performance":
System.out.println("FPS: " + realFPS + " UPS: " + realUPS + " CPS: " + realCPS);
break;
case "time":
System.out.println(getTimestamp());
break;
case "celobj":
if (tokens.length >= 3) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}
if (objFound) {
if (tokens.length >= 4) {
switch (tokens[3]) {
case "pos":
Vec3d pos = chosenObj.getCelPos();
System.out.println("POSITION: X= " + pos.x + " Y= " + pos.y + " Z= " + pos.z);
break;
case "vel":
Vec3d vel = chosenObj.getCelVel();
if (tokens.length >= 5 && tokens[4].equals("mag"))
System.out.println("VELOCITY: V= " + vel.magnitude());
else
System.out.println("VELOCITY: X= " + vel.x + " Y= " + vel.y + " Z= " + vel.z);
break;
case "mass":
System.out.println("MASS: M= " + chosenObj.getMass());
break;
case "radius":
System.out.println("RADIUS: R= " + chosenObj.getRadius());
break;
default:
System.err.println(notEnoughInfo);
}
} else
System.err.println(notEnoughInfo);
} else
System.err.println(tokenNotFound);
} else {
//Print list of celObjs
StringBuilder celObjNames = new StringBuilder("Celestial Objects: \n");
for (CelObj celObj : physics.getCelObjs()) {
celObjNames.append('\t').append(celObj.getName()).append('\n');
}
System.out.println(celObjNames.toString());
}
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "set":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "cps":
if (tokens.length >= 3) {
try {
int newCPS = parseInt(tokens[2]);
realTime_to_simTime = newCPS * timeInc;
System.out.println("Target CPS set to " + newCPS);
System.out.println("The simulation time is " + realTime_to_simTime + " times the speed of real time");
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "scale":
if (tokens.length >= 3) {
try {
scale = parseFloat(tokens[2]);
System.out.println("Render object scale is now set to " + scale);
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "speed":
if (tokens.length >= 3) {
try {
speed = parseFloat(tokens[2]);
System.out.println("Speed is now set to " + speed);
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "record":
if (tokens.length >= 4) {
if (tokens[3].equals("period")) {
try {
int newCPS = parseInt(tokens[2]);
realTime_to_simTime = newCPS * timeInc;
System.out.println("Target CPS set to " + newCPS);
System.out.println("The recording period is now every " + realTime_to_simTime + " seconds");
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
case "center":
if (tokens.length >= 3) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}
if (objFound) {
centerCelObj = chosenObj;
System.out.println(chosenObj.getName() + " has been set as the center");
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "create":
//TODO:
break;
case "uncenter":
centerCelObj = null;
System.out.println("There is currently no center object");
break;
case "tele":
if (tokens.length >= 2) {
switch (tokens[1]) {
case "pos":
if (tokens.length >= 5) {
try {
double x = parseDouble(tokens[2]);
double y = parseDouble(tokens[3]);
double z = parseDouble(tokens[4]);
Vec3f cameraPos = new Vec3f((float) x, (float) y, (float) z);
//If camera is locked to an object, then translating the camera will only
//do so with respect to that planet
//Hence, the camera is translated back to world coordinates by translating it
//the negative of its locked celObj position vector
if (camera.getLockedCelObj() != null) {
cameraPos.translate(
new Vec3f(
camera.getLockedCelObj().getCelPos()
).negate()
);
}
camera.setPosition(multiply(worldunit_per_meters, cameraPos));
System.out.println("The camera position has been set to X= " + x + " Y= " + y + " Z= " + z);
} catch (Exception e) {
System.err.println(unableToParse);
}
} else
System.err.println(notEnoughInfo);
break;
case "celobj":
if (tokens.length >= 3) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}
if (objFound) {
Vec3f celObjPos = new Vec3f(chosenObj.getCelPos());
Vec3f cameraPos = add(celObjPos, new Vec3f(0, (float) chosenObj.getRadius() * 2, 0));
//If camera is locked to an object, then translating the camera will only
//do so with respect to that planet
//Hence, the camera is translated back to world coordinates by translating it
//the negative of its locked celObj position vector
if (camera.getLockedCelObj() != null) {
cameraPos.translate(
new Vec3f(
camera.getLockedCelObj().getCelPos()
).negate()
);
}
//Make player 1 planet radius away from surface
camera.setPosition(multiply(worldunit_per_meters, cameraPos));
camera.setLookAt(multiply(worldunit_per_meters, celObjPos));
System.out.println("The camera position has been set to X= " + cameraPos.x + " Y= " + cameraPos.y + " Z= " + cameraPos.z);
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
default:
System.err.println(tokenNotFound);
}
} else
System.err.println(notEnoughInfo);
break;
case "lock":
if (tokens.length >= 2) {
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[1])) {
objFound = true;
chosenObj = celObj;
}
}
if (objFound) {
camera.setLockedCelObj(chosenObj);
camera.setPosition(new Vec3f(0, 0, 0));
System.out.println("The camera has been locked to " + chosenObj.getName());
System.out.println("Type 'unlock' to revert back to unlocked status");
} else
System.err.println(tokenNotFound);
} else
System.err.println(notEnoughInfo);
break;
case "unlock":
String celObjName = camera.getLockedCelObj().getName();
//If camera is locked to an object, then translating the camera will only
//do so with respect to that planet
//Hence, the camera is translated back to world equivalent of where it is in
//that celObj's space by translating it the celObj's position
camera.setPosition(
add(
multiply(worldunit_per_meters,
(new Vec3f(camera.getLockedCelObj().getCelPos()))),
camera.getPosition()
)
);
camera.setLockedCelObj(null);
System.out.println("The camera has been unlocked from " + celObjName);
Vec3f pos = camera.getPosition();
System.out.println("The camera position has been set to X= " + pos.x + " Y= " + pos.y + " Z= " + pos.z);
break;
case "lookat":
if (tokens.length >= 3) {
switch (tokens[1]) {
case "celobj":
boolean objFound = false;
CelObj chosenObj = null;
for (CelObj celObj : physics.getCelObjs()) {
if (celObj.getName().toLowerCase().equals(tokens[2])) {
objFound = true;
chosenObj = celObj;
}
}
if (objFound) {
camera.setLookAt(new Vec3f(multiply(worldunit_per_meters, chosenObj.getCelPos())));
System.out.println("The camera is now looking at " + chosenObj.getName());
} else
System.err.println(tokenNotFound);
break;
}
} else
System.err.println(notEnoughInfo);
break;
default:
System.err.println(tokenNotFound);
}
}
答案 0 :(得分:0)
您的直觉是正确的。您所拥有的代码可以真正地从以某种方式分解为较小的片段中受益。做到这一点的一种好方法是使其更受数据驱动。编码一长串命令的一种方法是在switch语句中,但是问题是该语句随着您拥有的命令越来越多而变得越来越长。数据驱动方法将命令名称和其后的代码视为数据,并将命令列表与解析并执行命令的代码分开。
让我们从一个代表命令处理程序的简单接口开始。这个函数会先赋予命令参数,然后执行命令所要做的任何事情。
public interface CommandHandler {
public void handle(List<String> arguments);
}
然后让process()
函数成为数据驱动的函数。现在,让我们处理前两个命令“ close”和“ toggle”。我们将从简单开始,看看这个想法是否有意义,然后在高层了解我们想做什么之后充实实现。
我们将创建命令名称到其处理程序的映射。这将为我们提供紧凑的命令列表,其中每个命令后面的代码分为单独的回调函数。如果您不熟悉它,则Commands::close
是方法参考。它为我们提供了一个CommandHandler
对象,该对象调用了方法Commands.close()
,稍后将对其进行定义。
public static void process(String input) {
Map<String, CommandHandler> commands = new HashMap<>();
commands.put("close", Commands::close);
commands.put("toggle", Commands::toggle);
List<String> tokens = Arrays.asList(input.toLowerCase().split("\\s+"));
process(tokens, commands);
}
这看起来不错。它又短又甜。它将输入字符串拆分为标记,但这就是它所做的全部工作。其余的推迟到第二个process()
方法。让我们现在写:
public static void process(List<String> tokens, Map<String, CommandHandler> commands) {
String command = tokens.get(0);
List<String> arguments = tokens.subList(1, tokens.size());
CommandHandler handler = commands.get(command);
if (handler != null) {
handler.handle(arguments)
}
}
这是命令解析逻辑的核心。它在映射中查找命令,如果找到一个,则执行相应的处理程序。很好的是,此方法对任何特定命令一无所知。这都是非常通用的。
它还设置为支持子命令。请注意,它是如何获取令牌列表的?以及如何将参数保存在单独的子列表中?这样做意味着不仅可以为顶级命令调用它,还可以为诸如“渲染”之类的子命令调用它。
难题的最后一步是定义每个命令处理程序。我已经将它们放在自己的班级中,但是您不必这样做。这些全都可以是您原始类中的方法(我只是不知道您叫它的名字就是全部)。
public class Commands {
public static void close(List<String> arguments) {
run = false;
}
public static void toggle(List<String> arguments) {
if (arguments.length == 0) {
System.err.println(notEnoughInfo);
return;
}
Map<String, CommandHandler> subCommands = new HashMap<>();
subCommands.put("render", arguments -> {
render = !render;
System.out.println("Render setting set to " + render);
});
subCommands.put("physics", arguments -> {
updatePhysics = !updatePhysics;
System.out.println("Physics update setting set to " + updatePhysics);
});
subCommands.put("trails", arguments -> {
showTrails = !showTrails;
System.out.println("Show trails setting set to " + showTrails);
});
subCommands.put("constellations", arguments -> {
showConstellations = !showConstellations;
System.out.println("Show constellations setting set to " + showConstellations);
});
process(arguments, subCommands);
}
}
toggle()
展示了子命令解析。就像上面的代码一样,它创建子命令的映射并注册其名称和处理程序。就像顶上一样,它调用与以前相同的process()
函数。
这一次,因为处理程序非常简单,所以没有必要将它们分解为单独的命名函数。我们可以使用匿名lambda来内联注册处理程序。像Commands::close
之前所做的一样,arguments -> { code }
创建一个CommandHandler
内联。
答案 1 :(得分:0)
考虑使用getopt
Getopt g = new Getopt("testprog", argv, "ab:c::d");
//
int c;
String arg;
while ((c = g.getopt()) != -1)
{
switch(c)
{
case 'a':
case 'd':
System.out.print("You picked " + (char)c + "\n");
break;
//
case 'b':
case 'c':
arg = g.getOptarg();
System.out.print("You picked " + (char)c +
" with an argument of " +
((arg != null) ? arg : "null") + "\n");
break;
//
case '?':
break; // getopt() already printed an error
//
default:
System.out.print("getopt() returned " + c + "\n");
}
}