计算numpy列表中项目的准确共现次数

时间:2018-07-05 14:17:32

标签: python numpy

我试图找出最快的方法来计算在numpy列表中两个值一个接一个定位的次数。

例如:

list = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2] 并且我想计算值1跟在值2之后的次数(反之亦然)

在上面的示例中,答案应为1,因为1仅跟随2一次。

很明显,我可以通过一个简单的for循环来找到答案,每次当项i等于1和项i-1等于2时,计数器都会添加一个计数器,但我认为必须有一种更快的方法,

谢谢

5 个答案:

答案 0 :(得分:5)

您可以使用np.diffnp.where来做到这一点:

import numpy as np

mylist = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2]

# Turn your list into a numpy array
myarray = np.array(mylist)

# find occurences where myarray is 2 and the following element is 2 minus 1
np.sum((myarray[:-1] == 2) & (np.diff(myarray) == -1))

哪个返回1

大型定时

在一个很小的列表上,迭代方法和numpy方法之间的时间差将不会明显。但是在大型数组上(如下例所示),numpy的性能要好得多。

import timeit

mylist = np.random.choice(range(0,9), 1000000)

def np_method(mylist = mylist):
    return np.sum((mylist[:-1] == 2) & (np.diff(mylist) == -1))

def zip_loop(a = mylist):
    return len( [1 for i,j in zip(a, a[1:]) if i == 2 and j == 1] )

def for_loop(list1 = mylist):
    count=0
    desired_num=2
    follower_num=1
    for i in range(len(list1)-1):
        if list1[i]==desired_num:
            if list1[i+1]==follower_num:
                count+=1
    return count

>>> timeit.timeit(np_method, number = 100) / 100
0.006748438189970329

>>> timeit.timeit(zip_loop, number = 100) / 100
0.3811768989200209

>>> timeit.timeit(for_loop, number = 100) / 100
0.3774999916599336

答案 1 :(得分:1)

我能想到的最简单的方法是使用for循环

count=0
desired_num=2
follower_num=1
for i in range(len(list1)-1):
    if list1[i]==desired_num:
        if list1[i+1]==follower_num:
            count+=1
print("total occurance=",count)

需要:我的机器上获取0.0003437995910644531s

答案 2 :(得分:0)

我建议您使用切片和理解来遍历您的输入列表,如下所示:

myList = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2]

result = sum(myList[i:i+2] == [2,1] for i in range(len(myList)-1))

print(result) # 1

使用zip()功能还可以帮助您:

myList = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2]

result = sum((i,j) == (2,1) for (i,j) in zip(myList, myList[1:]))

print(result) # 1

答案 3 :(得分:-1)

您不应调用变量list -它已在python中使用并且非常混乱。

>>> a = [1, 5, 4, 1, 2, 4, 6, 7, 2, 1, 3, 3, 1, 2]
>>> len( [1 for i,j in zip(a, a[1:]) if i == 2 and j == 1] )
1

基本上,您可以使用zip()将数组放在其自身上,并处理数字对,以查找任何组合:

>>> zip(a, a[1:])
[(1, 5), (5, 4), (4, 1), (1, 2), (2, 4), (4, 6), (6, 7), (7, 2), (2, 1), (1, 3), (3, 3), (3, 1), (1, 2)]

答案 4 :(得分:-1)

仅出于乐趣,我已对所有4种主要解决方案进行了计时,结果如下:

#!/usr/bin/env python

import numpy as np
import random

def f1(li):
    return np.sum((np.array(li[:-1]) == 2) & (np.diff(li) == -1))

def f2(li):
    return sum((i,j) == (2,1) for (i,j) in zip(li, li[1:]))

def f3(li):
    count=0
    desired_num=2
    follower_num=1
    for i in range(len(li)-1):
        if li[i]==desired_num:
        if li[i+1]==follower_num:
            count+=1
    return count    

def f4(li) :
    return len( [1 for i,j in zip(li, li[1:]) if i == 2 and j == 1] )

if __name__=='__main__':
    import timeit   
    import random
    s = []
    for i in range(10000000) :
        s.append( random.randint(1,10) )

    print f1(s), f2(s), f3(s), f4(s)

    print(f1(s)==f2(s)==f3(s)==f4(s))

    for f in (f1,f2,f3,f4):
        print("   {:^10s}{:.4f} secs".format(f.__name__, timeit.timeit("f(s)", setup="from __main__ import f, s", number=10)))

'''
output:

100236 100236 100236 100236
True
       f1    7.2285 secs
       f2    13.7680 secs
       f3    4.3167 secs
       f4    7.7375 secs

'''

令人惊讶的是,简单的for循环拍子numpy =)