This 是TFLearn文档的示例。它显示了如何使用TFLearn训练器和常规Tensorflow图来结合TFLearn和Tensorflow。但是,省略了训练,测试和验证准确性的计算。
from __future__ import print_function
import tensorflow as tf
import tflearn
# --------------------------------------
# High-Level API: Using TFLearn wrappers
# --------------------------------------
# Using MNIST Dataset
import tflearn.datasets.mnist as mnist
mnist_data = mnist.read_data_sets(one_hot=True)
# User defined placeholders
with tf.Graph().as_default():
# Placeholders for data and labels
X = tf.placeholder(shape=(None, 784), dtype=tf.float32)
Y = tf.placeholder(shape=(None, 10), dtype=tf.float32)
net = tf.reshape(X, [-1, 28, 28, 1])
# Using TFLearn wrappers for network building
net = tflearn.conv_2d(net, 32, 3, activation='relu')
net = tflearn.max_pool_2d(net, 2)
net = tflearn.local_response_normalization(net)
net = tflearn.dropout(net, 0.8)
net = tflearn.conv_2d(net, 64, 3, activation='relu')
net = tflearn.max_pool_2d(net, 2)
net = tflearn.local_response_normalization(net)
net = tflearn.dropout(net, 0.8)
net = tflearn.fully_connected(net, 128, activation='tanh')
net = tflearn.dropout(net, 0.8)
net = tflearn.fully_connected(net, 256, activation='tanh')
net = tflearn.dropout(net, 0.8)
net = tflearn.fully_connected(net, 10, activation='linear')
# Defining other ops using Tensorflow
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=net, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=0.01).minimize(loss)
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
batch_size = 128
for epoch in range(2): # 2 epochs
avg_cost = 0.
total_batch = int(mnist_data.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist_data.train.next_batch(batch_size)
sess.run(optimizer, feed_dict={X: batch_xs, Y: batch_ys})
cost = sess.run(loss, feed_dict={X: batch_xs, Y: batch_ys})
avg_cost += cost / total_batch
if i % 20 == 0:
print("Epoch:", '%03d' % (epoch + 1), "Step:", '%03d' % i,
"Loss:", str(cost))`
最后一行是计算成本的地方。如果我想同时计算训练和验证准确性,代码应该是什么?
编辑: 我拼凑了一段代码,我相信这段代码可以计算出循环中的训练和验证准确性。
我的解决方案是否按照我的想法做:在模型训练时计算运行精度。
在TFLearn中是否有更好的方法?我注意到张量板相当广泛。可以从事件日志中检索这些数据吗?
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
tf_train_dataset = tf.placeholder(
tf.float32, shape=(batch_size, image_size, image_size, num_channels))
data = reshape(tf_train_dataset,[-1, image_size, image_size, num_channels])
network = input_data(shape=[None, image_size, image_size, num_channels],
#placeholder=data,
data_preprocessing=feature_normalization,
data_augmentation=None,
name='input_d')
network = conv_2d(network,
nb_filter=num_channels,
filter_size=patch_size,
strides=[1, 2, 2, 1],
padding='SAME',
activation='relu',
bias=True,
weights_init=weight_init_trn,
bias_init=weight_init_zro,
restore=True,
regularizer=None)
network = conv_2d(network,
nb_filter=depth,
filter_size=patch_size,
strides=[1, 2, 2, 1],
padding='SAME',
activation='relu',
bias=True,
weights_init=weight_init_trn,
bias_init=tf.constant(1.0, shape=[depth]),
restore=True,
regularizer=None)
network = fully_connected(network,
n_units=num_hidden,
activation='relu',
bias=True,
weights_init=weight_init_trn,
bias_init=tf.constant(1.0, shape=[num_hidden]),
regularizer=None,
restore=True
)
network = fully_connected(network,
n_units=num_labels,
activation=None,
bias=True,
weights_init=weight_init_trn,
bias_init=tf.constant(1.0, shape=[num_labels]),
regularizer=None,
restore=True,
name='fullc'
)
network = activation(network,'softmax')
network = regression(network, optimizer='SGD',
loss='categorical_crossentropy',
learning_rate=0.05, name='targets')
model_dnn_tr = tflearn.DNN(network, tensorboard_verbose=0)
num_steps = 1001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
loss = model_dnn_tr.fit_batch({'input_d' : batch_data}, {'targets':
batch_labels})
if (step % 50 == 0):
trainAccr = accuracy(model_dnn_tr.predict({'input_d' :
batch_data}), batch_labels)
validAccr = accuracy(model_dnn_tr.predict({'input_d' :
valid_dataset}), valid_labels)
print("Minibatch accuracy: %.1f%%" % trainAccr)
print("Validation accuracy: %.1f%%" % validAccr)
testAccr = accuracy(model_dnn_tr.predict({'input_d' : test_dataset}),
test_labels)
print("testAccr time:", round(time()-t0,3),"s")
print("Test accuracy: %.1f%%" % testAccr)
答案 0 :(得分:0)
到目前为止我找到的最令人满意的解决方案:
使用数据集对象和迭代器来馈送数据。
def accuracy(predictions, labels):
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
/ predictions.shape[0])
image_size = 28
num_labels = 10
num_channels = 1 # grayscale
batch_size = 16
patch_size = 5
depth = 16
num_hidden = 64
graph = tf.Graph()
with graph.as_default():
data_prep = DataPreprocessing()
data_prep.add_featurewise_stdnorm()
data_prep.add_featurewise_zero_center()
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
feature_normalization = None
weight_init_trn = initializations.truncated_normal(seed=None, dtype=tf.float32, stddev=0.1)
weight_init_zro = initializations.zeros(seed=None, dtype=tf.float32)
weight_init_cns = tf.constant(1.0)
# Input data.
# create a placeholder to dynamically switch between batch sizes
batch_size_x = tf.placeholder(tf.int64)
data_placeholder = tf.placeholder(tf.float32, shape=(None, image_size, image_size, num_channels))
labels_placeholder = tf.placeholder(tf.float32, shape=(None, num_labels))
# create dataset: one for training and one for test etc
dataset = tf.data.Dataset.from_tensor_slices((data_placeholder, labels_placeholder)).batch(batch_size_x).repeat()
# create a iterator of the correct shape and type
iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes)
# get the tensor that will contain your data
feature, label = iterator.get_next()
# create the initialisation operations
init_op = iterator.make_initializer(dataset)
valid_data_x = tf.constant(valid_data)
test_data_x = tf.constant(test_data)
# Model.
network = input_data(shape=[None, image_size, image_size, num_channels],
placeholder=data_placeholder,
data_preprocessing=feature_normalization,
data_augmentation=None,
name='input_d')
network = conv_2d(network,
nb_filter=num_channels,
filter_size=patch_size,
strides=[1, 2, 2, 1],
padding='SAME',
activation='relu',
bias=True,
weights_init=weight_init_trn,
bias_init=weight_init_zro,
restore=True,
regularizer=None)
network = conv_2d(network,
nb_filter=depth,
filter_size=patch_size,
strides=[1, 2, 2, 1],
padding='SAME',
activation='relu',
bias=True,
weights_init=weight_init_trn,
bias_init=tf.constant(1.0, shape=[depth]),
restore=True,
regularizer=None)
network = fully_connected(network,
n_units=num_hidden,
activation='relu',
bias=True,
weights_init=weight_init_trn,
bias_init=tf.constant(1.0, shape=[num_hidden]),
regularizer=None,
restore=True
)
logits = fully_connected(network,
n_units=num_labels,
activation=None,
bias=True,
weights_init=weight_init_trn,
bias_init=tf.constant(1.0, shape=[num_labels]),
regularizer=None,
restore=True,
name='fullc2'
)
# Training computation.
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels_placeholder,logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
prediction = tf.nn.softmax(logits)
num_steps = 1001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print('Initialized')
# initialise iterator with train data
print('Training...')
feed_dict = {data_placeholder: train_data,
labels_placeholder: train_data_labels,
batch_size_x: batch_size}
session.run(init_op, feed_dict = feed_dict)
for step in range(num_steps):
batch_data,batch_labels = session.run( [feature, label], feed_dict =
feed_dict )
t0 = time()
feed_dict2 = {data_placeholder: batch_data, labels_placeholder: batch_labels}
_, l, predictions = session.run([optimizer, loss, prediction],
feed_dict=feed_dict2)
print("fit time:", round(time()-t0,3),"s")
if (step % 50 == 0):
t0 = time()
trainAccrMb = accuracy(predictions, batch_labels)
print("trainAccr time:", round(time()-t0,3),"s")
t0 = time()
feed_dict = {data_placeholder: valid_data_x.eval(), labels_placeholder: valid_data_labels }
valid_prediction = session.run(prediction,
feed_dict=feed_dict)
validAccr= accuracy(valid_prediction, valid_data_labels)
print("validAccr time:", round(time()-t0,3),"s")
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % trainAccrMb)
print("Validation accuracy: %.1f%%" % validAccr)
t0 = time()
feed_dict = {data_placeholder: test_data_x.eval(), labels_placeholder:
test_data_labels }#, batch_size_x: len(valid_data)}
test_prediction = session.run(prediction,
feed_dict=feed_dict)
testAccr = accuracy(test_prediction, test_data_labels)
print("testAccr time:", round(time()-t0,3),"s")
print("Test accuracy: %.1f%%" % testAccr)