对于tensorflow估计器,我还是一个新手,它试图“通过ConvNet处理视频的每一帧,总结重建损失,然后优化参数”。
所以我想知道是否可以在model_fn中为估算器编写 for循环,以便我可以处理视频的每一帧,然后一起进行优化。
谢谢
P.S。我附上了自己的实现的两个摘要,它们都起作用。即使我将 cnn_model 嵌入到 model_fn 中,这似乎也为估计器定义了model_fn允许循环。
Vanilla Tensorflow实现:
import os, sys
import tensorflow as tf
# Read in video dataset in [batch, frames, height, width]
raw_data = np.load(Data_root)
dataset = tf.data.Dataset.from_tensor_slices((raw_data))
dataset = dataset.batch(BATCH_SIZE)
iterator = dataset.make_initializable_iterator()
one_element = iterator.get_next()
# Set up placeholder for each frame
frame = tf.placeholder('float32', [BATCH_SIZE, IMAGE_HEIGHT, IAMGE_WIDTH])
label = tf.placeholder('float32', [BATCH_SIZE, IMAGE_HEIGHT, IAMGE_WIDTH])
# Define network
with tf.name_scope("network"):
with tf.name_scope("Encoder"):
conv1 = tf.layers.conv2d(frames, 32, [3,3], strides=2, padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv2d(conv1, 64, [3,3], strides=2, padding='same', activation=tf.nn.relu)
with tf.name_scope("Repeat_Layer"):
latent = tf.layers.conv2d(conv2, 64, [3,3], strides=2, padding='same', activation=tf.nn.relu)
with tf.name_scope("Decoder"):
conv3 = tf.layers.conv2d_transpose(latent, 32, [3, 3], strides=2, padding='same', activation=tf.nn.relu)
conv4 = tf.layers.conv2d_transpose(conv3, 1, [3, 3], strides=2, padding='same', activation=tf.nn.relu)
prediction = tf.identity(conv4, name='prediciton')
# Define loss
loss_mse = tf.losses.mean_squared_error(frame, prediction)
# Define optim
optimizer = tf.train.RMSPropOptimizer(0.001).minimize(loss_total)
# Init
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
with tf.Session as sess:
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# Assume train_batch with shape [batch, 5, height, width]
train_batch, label_batch = sess.run([one_element])
loss_total = 0.0
for i in range(5):
feed_dict = {frame:train_batch[:, i, :, :], label:label_batch[0][:, i, :, :]}
loss = sess.run([loss_mse], feed_dict=feed_dict)
loss_total += loss
feed_dict = {loss_total:loss_total}
_ = sess.run([optimizer], feed_dict=feed_dict)
print("Optimization is Finished!")
coord.request_stop()
coord.join(threads)
sess.close()
估算器实现
import os, sys
import tensorflow as tf
import numpy as np
def cnn_model(input_feature):
with tf.name_scope("Encoder"):
conv1 = tf.layers.conv2d(frames, 32, [3,3], strides=2, padding='same', activation=tf.nn.relu)
conv2 = tf.layers.conv2d(conv1, 64, [3,3], strides=2, padding='same', activation=tf.nn.relu)
with tf.name_scope("Repeat_Layer"):
latent = tf.layers.conv2d(conv2, 64, [3,3], strides=2, padding='same', activation=tf.nn.relu)
with tf.name_scope("Decoder"):
conv3 = tf.layers.conv2d_transpose(latent, 32, [3, 3], strides=2, padding='same', activation=tf.nn.relu)
conv4 = tf.layers.conv2d_transpose(conv3, 1, [3, 3], strides=2, padding='same', activation=tf.nn.relu)
return conv4
def model_fn(features, labels, mode):
# Assume each video contains five frames
input_feature = tf.reshape(features, [batch, 5, height, width])
loss_total = 0.0
for i in range(5):
input_layer = input_feature[:, i, :, :]
prediction = cnn_model(input_layer)
loss_mse = tf.losses.mean_squared_error(labels=labels, predictions=prediction)
loss_total += loss_mse
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss_mse,
global_step=tf.train.get_global_step()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss_mse, train_op=train_op)
def main(unused_argv):
# Load video data [batch, 5, height, width]
data_path = '/xxx/train.npy'
train_data = np.load(data_path)
# Set up Estimator
AutoEncoder = tf.estimator.Estimator(
model_fn=model_fn, model_dir=None
)
# Set up input_fn pipeline
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x":train_data},
y=train_data,
batch_size=10,
num_epochs=100,
shuffle=True
)
# Start train
AutoEncoder.train(
input_fn=train_input_fn,
steps=15000,
hooks=hooks
)
if __name__ == "__main__":
with tf.device("/gpu:0"):
tf.app.run()
答案 0 :(得分:0)
我将在这里回答我自己的问题。
答案是是。我们可以在estimator框架下在model_fn中使用python for循环,如上面的第二段代码所示。
如果运行第二个sinppet,由于Estimator Framework本身会生成Tensorboard Logging,我们可以通过“ tensorboard --logdir ='path_to_model'”轻松检出图形结构。您会看到 AutoEncoder 模块运行了5次,而损耗又相加了5次,这证明了我的猜测。
在某种程度上,这是不平凡的问题。借助 for循环,我们可以输入任何类型的顺序数据,对其进行处理,然后一起优化模型。例如,我可以处理视频的每一帧,计算重建损失,然后反向传播总体损失。