我正在尝试为每个组合并两个数据帧,以便为每个用户填充时间。考虑以下pyspark数据帧,
df = sqlContext.createDataFrame(
[
('2018-03-01 00:00:00', 'A', 5),
('2018-03-01 03:00:00', 'A', 7),
('2018-03-01 02:00:00', 'B', 3),
('2018-03-01 04:00:00', 'B', 2)
],
('datetime', 'username', 'count')
)
#and
df1 = sqlContext.createDataFrame(
[
('2018-03-01 00:00:00',1),
('2018-03-01 01:00:00', 2),
('2018-03-01 02:00:00', 2),
('2018-03-01 03:00:00', 3),
('2018-03-01 04:00:00', 1),
('2018-03-01 05:00:00', 5)
],
('datetime', 'val')
)
产生
+-------------------+--------+-----+
| datetime|username|count|
+-------------------+--------+-----+
|2018-03-01 00:00:00| A| 5|
|2018-03-01 03:00:00| A| 7|
|2018-03-01 02:00:00| B| 3|
|2018-03-01 04:00:00| B| 2|
+-------------------+--------+-----+
#and
+-------------------+---+
| datetime|val|
+-------------------+---+
|2018-03-01 00:00:00| 1|
|2018-03-01 01:00:00| 2|
|2018-03-01 02:00:00| 2|
|2018-03-01 03:00:00| 3|
|2018-03-01 04:00:00| 1|
|2018-03-01 05:00:00| 5|
+-------------------+---+
val
中的列df1
是无关的,在最终结果中不需要,因此我们可以将其删除。最后,预期结果将是
+-------------------+--------+-----+
| datetime|username|count|
+-------------------+--------+-----+
|2018-03-01 00:00:00| A| 5|
|2018-03-01 01:00:00| A| 0|
|2018-03-01 02:00:00| A| 0|
|2018-03-01 03:00:00| A| 7|
|2018-03-01 04:00:00| A| 0|
|2018-03-01 05:00:00| A| 0|
|2018-03-01 00:00:00| B| 0|
|2018-03-01 01:00:00| B| 0|
|2018-03-01 02:00:00| B| 3|
|2018-03-01 03:00:00| B| 0|
|2018-03-01 04:00:00| B| 2|
|2018-03-01 05:00:00| B| 0|
+-------------------+--------+-----+
我曾尝试groupBy()
和join
,但这没用。我还尝试创建一个函数并将其注册为pandas_udf()
,但仍然无法正常工作,即
df.groupBy('usernames').join(df1, 'datetime', 'right')
和
@pandas_udf('datetime string, username string, count double', F.PandasUDFType.GROUPED_MAP)
def fill_time(df):
return df.merge(df1, on = 'cdatetime', how = 'right')
有什么建议吗?
答案 0 :(得分:3)
只需跨产品使用不同的时间戳和用户名,然后外部联接数据即可:
from pyspark.sql.functions import broadcast
(broadcast(df1.select("datetime").distinct())
.crossJoin(df.select("username").distinct())
.join(df, ["datetime", "username"], "leftouter")
.na.fill(0))
要使用pandas_udf
,您需要一个本地对象作为参考
from pyspark.sql.functions import PandasUDFType, pandas_udf
def fill_time(df1):
@pandas_udf('datetime string, username string, count double', PandasUDFType.GROUPED_MAP)
def _(df):
df_ = df.merge(df1, on='datetime', how='right')
df_["username"] = df_["username"].ffill().bfill()
return df_
return _
(df.groupBy("username")
.apply(fill_time(
df1.select("datetime").distinct().toPandas()
))
.na.fill(0))
但是它会比仅使用SQL的解决方案慢。