第一个表meter_values
from keras.models import Sequential
from keras.layers import LSTM, Dense
nb_frames = 10
model = Sequential()
model.add(LSTM(20, input_shape=(nb_frames, 36)))
model.add(Dense(1, activation='relu'))
model.compile('rmsprop', 'mse')
model.summary()
第二个餐桌时段
|id | somedata | date(YY-MM-DD)| status |
|-----+-----------+---------------+--------|
|1 | tets | 20180628 | 6 |
|2 | setd | 20180627 | 6 |
|3 | ewrw5 | 20180701 | 6 |
|4 | 6werww | 20180730 | 6 |
|5 | werqwe | 20180803 | 6 |
|6 | wrwerw | 20171130 | 6 |
我需要获取count(meter_values),其中meter_values.status = 6并根据表period.begin和period.end按年份和日期分组
示例:
| year | begin | end |
|--------+----------+----------|
| 201807 | 20180626 | 20180704 |
| 201808 | 20180730 | 20180803 |
| 201801 | 20171228 | 20180104 |
| 201712 | 20171129 | 20171205 |
我尝试此查询
| year | begin | end | count(meter_values) |
|--------+----------+----------+---------------------|
| 201807 | 20180626 | 20180704 | 3 |
| 201808 | 20180730 | 20180803 | 2 |
| 201801 | 20171228 | 20180104 | 0 |
| 201712 | 20171129 | 20171205 | 1 |
但是我得到所有记录的计数
select *
from period,
(select count(meter_values.id)
from meter_values, period
where meter_values.date>=period.begin
and meter_values.date<=period.end
and meter_values.status=6
and period.begin is not null
and period.end is not null)
as mv
where period.begin is not null and period.end is not null;
答案 0 :(得分:2)
您可以使用内部联接和计数
/profile