我想初始化一个变量列表,并将它们定义为名为“ block_var”的列表。我想使用截断的普通方法来初始化它们。
block_var = [v for v in tf.global_variables() if 'block' in v.name]
init_block = tf.variables_initializer(var_list = block_var)
那我该怎么办? 我尝试过
for v in block_var:
v.initializer = tf.truncated_normal_initializer()
我也尝试过
init_block = tf.truncated_normal_initializer()
两个字段。
答案 0 :(得分:1)
您需要像{p>这样传递get_variable
的初始值设定项参数
import tensorflow as tf
import numpy as np
ref0 = tf.get_variable('block0', [2], initializer=tf.truncated_normal_initializer(mean=40))
ref1 = tf.get_variable('block1', [2], initializer=tf.truncated_normal_initializer(mean=40))
ref2 = tf.get_variable('block2', [2], initializer=tf.truncated_normal_initializer(mean=40))
ref4 = tf.get_variable('foo0', [2], initializer=tf.truncated_normal_initializer(mean=10))
ref5 = tf.get_variable('foo1', [2], initializer=tf.truncated_normal_initializer(mean=10))
block_vars = [v for v in tf.global_variables() if 'block' in v.name]
block_vars_complement = [v for v in tf.global_variables() if 'block' not in v.name]
with tf.Session() as sess:
sess.run(tf.variables_initializer(var_list=block_vars))
print(np.mean(sess.run([ref0, ref1, ref2])), 'should be ~ 40')
try:
print(np.mean(sess.run([ref4])))
except Exception as e:
print('[INFO] failed as expected with message %s' % e)
sess.run(tf.variables_initializer(var_list=block_vars_complement))
print(np.mean(sess.run([ref4, ref5])), 'should be ~ 10')
如果您不想将initializer
传递给每个get_variable
,则可以使用类似的自定义吸气剂
import tensorflow as tf
import numpy as np
def my_getter(getter, name, shape, *args, **kwargs):
if 'block' not in name:
return getter(name=name, shape=shape, *args, **kwargs)
else:
kwargs['initializer'] = tf.truncated_normal_initializer(mean=40)
return getter(name=name, shape=shape, *args, **kwargs)
with tf.variable_scope("some_scopename", custom_getter=my_getter):
ref0 = tf.get_variable('block0', [2], initializer=tf.truncated_normal_initializer(mean=10))
ref1 = tf.get_variable('block1', [2], initializer=tf.truncated_normal_initializer(mean=10))
ref2 = tf.get_variable('block2', [2], initializer=tf.truncated_normal_initializer(mean=10))
ref4 = tf.get_variable('foo0', [2], initializer=tf.truncated_normal_initializer(mean=10))
ref5 = tf.get_variable('foo1', [2], initializer=tf.truncated_normal_initializer(mean=10))
block_vars = [v for v in tf.global_variables() if 'block' in v.name]
block_vars_complement = [v for v in tf.global_variables() if 'block' not in v.name]
with tf.Session() as sess:
sess.run(tf.variables_initializer(var_list=block_vars))
print(np.mean(sess.run([ref0, ref1, ref2])), 'should be ~ 40')
try:
print(np.mean(sess.run([ref4])))
except Exception as e:
print('[INFO] failed as expected with message %s' % e)
sess.run(tf.variables_initializer(var_list=block_vars_complement))
print(np.mean(sess.run([ref4, ref5])), 'should be ~ 10')
tf.truncated_normal_initializer
或其他初始化程序本身就是操作。因此,可以将它们循环应用于集合中的所有变量,并且最终可以应用这种分组的更新(请参见initialize_collection
):
import tensorflow as tf
import numpy as np
ref0 = tf.get_variable('block0', [2], initializer=tf.truncated_normal_initializer(mean=40))
ref1 = tf.get_variable('block1', [2], initializer=tf.truncated_normal_initializer(mean=40))
ref2 = tf.get_variable('block2', [2], initializer=tf.truncated_normal_initializer(mean=40))
ref4 = tf.get_variable('foo0', [2], initializer=tf.truncated_normal_initializer(mean=10))
ref5 = tf.get_variable('foo1', [2], initializer=tf.truncated_normal_initializer(mean=10))
block_vars = [v for v in tf.global_variables() if 'block' in v.name]
block_vars_complement = [v for v in tf.global_variables() if 'block' not in v.name]
def initialize_collection(collection, initializer):
ops = []
for v in collection:
ops.append(v.assign(initializer(shape=v.shape)))
return tf.group(ops)
with tf.Session() as sess:
sess.run(tf.variables_initializer(var_list=block_vars))
print(np.mean(sess.run([ref0, ref1, ref2])), 'should be ~ 40')
sess.run(initialize_collection(block_vars, tf.truncated_normal_initializer(mean=-40, stddev=0.01)))
print(np.mean(sess.run([ref0, ref1, ref2])), 'should be ~ -40')
答案 1 :(得分:-1)
更新:如评论中所述,我的早期代码存在错误。它创建了新变量。因此,我进行了改进,现在使用assert进行检查。
可能是这样。
import tensorflow as tf
import numpy as np
with tf.variable_scope("reuse"):
x = tf.get_variable('x', [5, 5])
y = tf.get_variable('y', [5, 5])
block_var = [v.name for v in tf.trainable_variables()]
def initialize( name, shape ):
with tf.variable_scope("reuse",reuse=True):
x = tf.get_variable(name.split(':')[0][-1], shape = shape, initializer=tf.random_normal_initializer())
x.initializer.run()
print (x.eval())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
vars = sess.run(block_var)
for name,shape in zip(block_var,vars):
initialize( name, shape.shape )
assert (len(tf.global_variables()) == 2), "Variables are not reused"