如何将熊猫操作集成到sklearn管道中

时间:2018-07-03 23:24:17

标签: python pandas class scikit-learn pipeline

我对熊猫数据框有一个简单的操作,如下所示:

# initialization
dct = {1: 'A', 2:'B', 3: 'C'}
df = pd.DataFrame({'id': [1,2,3], 'value':[7,8,9]})
# actual transformation
df['newid'] = df.id.map(dct)

我想将此转换作为sklearn管道的一部分。我发现了一些教程hereherehere。但是我只是无法让它对我有用。这是我尝试过的许多版本中的一个版本:

# initialization
dct = {1: 'A', 2:'B', 3: 'C'}
df = pd.DataFrame({'id': [1,2,3], 'value':[7,8,9]})

# define a class similar to those in the tutorials
class idMapper(BaseEstimator, TransformerMixin):
    def __init__(self, key='id'):
        self.key = key

    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return X[key].map(dct)

# Apply the transformation
idMapper.fit_transform(df)

错误消息是这样的:TypeError: fit_transform() missing 1 required positional argument: 'X'。谁能帮助我解决此问题并使它正常工作?谢谢!

1 个答案:

答案 0 :(得分:3)

请参见下面的代码更正版本。注释中给出了解释。

dct = {1: 'A', 2:'B', 3: 'C'}
df = pd.DataFrame({'id': [1,2,3], 'value':[7,8,9]})

# define a class similar to those in the tutorials
class idMapper(BaseEstimator, TransformerMixin):
    def __init__(self, key='id'):
        self.key = key

    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return X[self.key].map(dct)  # <--- self.key

# Apply the transformation
idMapper().fit_transform(df)  # <--- need to instantiate