我的神经网络存在此问题。我正在尝试为babi数据集实现所谓的DMN(动态内存网络)。可以在以下位置找到关于DMN模型的论文:http://arxiv.org/abs/1506.07285在这里可以找到关于DMN模型的另一篇论文:https://yerevann.github.io/2016/02/05/implementing-dynamic-memory-networks/
这是我的问题。顺便说一句,我正在使用PyTorch。
我将训练和测试数据分为几个部分,以进行训练,测试和验证。我使用1000个零件进行培训,使用500个零件进行测试,并使用500个零件进行验证。我遇到了问题。我可以成功地进行训练,但是当我进入验证步骤时,我的分数从未超过50%。使用babi数据集可以证明,使用第一个测试集,您应该能够获得100%的准确性。 (共有20个测试集)。在培训期间,我可以获得100%的准确性,但在验证中只能获得50%的准确性。我想问的是,程序的哪一部分将负责这种行为?换句话说,你能告诉我为什么我总是得到50%吗?谢谢你的时间。目前,我的实验仅限于第一个babi测试。
我以为我已经弄明白了,但是我的问题又出现了。我真的不知道这是什么。这是代码的链接。如果您可以看看,我将不胜感激。 https://github.com/radiodee1/awesome-chatbot/blob/master/model/babi_iv.py
下面包含一些代码。
class WrapMemRNN(nn.Module):
def __init__(self,vocab_size, embed_dim, hidden_size, n_layers, dropout=0.3, do_babi=True, bad_token_lst=[], freeze_embedding=False, embedding=None, print_to_screen=False):
super(WrapMemRNN, self).__init__()
self.hidden_size = hidden_size
self.n_layers = n_layers
self.do_babi = do_babi
self.print_to_screen = print_to_screen
self.bad_token_lst = bad_token_lst
self.embedding = embedding
self.freeze_embedding = freeze_embedding
self.teacher_forcing_ratio = hparams['teacher_forcing_ratio']
gru_dropout = dropout * 0
self.model_1_enc = Encoder(vocab_size, embed_dim, hidden_size, n_layers, dropout=dropout,embedding=embedding, bidirectional=False)
self.model_2_enc = Encoder(vocab_size, embed_dim, hidden_size, n_layers, dropout=gru_dropout, embedding=embedding, bidirectional=False)
self.model_3_mem_a = MemRNN(hidden_size, dropout=gru_dropout)
self.model_3_mem_b = MemRNN(hidden_size, dropout=gru_dropout)
self.model_4_att = EpisodicAttn(hidden_size, dropout=gru_dropout)
self.model_5_ans = AnswerModule(vocab_size, hidden_size,dropout=dropout)
self.input_var = None # for input
self.q_var = None # for question
self.answer_var = None # for answer
self.q_q = None # extra question
self.inp_c = None # extra input
self.inp_c_seq = None
self.all_mem = None
self.last_mem = None # output of mem unit
self.prediction = None # final single word prediction
self.memory_hops = hparams['babi_memory_hops']
self.reset_parameters()
if self.freeze_embedding or self.embedding is not None:
self.new_freeze_embedding()
#self.criterion = nn.CrossEntropyLoss()
pass
def reset_parameters(self):
#print('reset')
stdv = 1.0 / math.sqrt(self.hidden_size)
for weight in self.parameters():
#print('here...')
weight.data.uniform_(-stdv, stdv)
if len(weight.size()) > 1:
init.xavier_normal_(weight)
def forward(self, input_variable, question_variable, target_variable, criterion=None):
self.new_input_module(input_variable, question_variable)
self.new_episodic_module()
outputs, ans = self.new_answer_module_simple()
return outputs, None, ans, None
def new_freeze_embedding(self):
self.model_1_enc.embed.weight.requires_grad = False
self.model_2_enc.embed.weight.requires_grad = False
print('freeze embedding')
pass
def new_input_module(self, input_variable, question_variable):
prev_h1 = []
for ii in input_variable:
ii = self.prune_tensor(ii, 2)
out1, hidden1 = self.model_1_enc(ii, None)
prev_h1.append(hidden1)
self.inp_c_seq = prev_h1
self.inp_c = prev_h1[-1]
prev_h2 = []
for ii in question_variable:
ii = self.prune_tensor(ii, 2)
out2, hidden2 = self.model_2_enc(ii, None)
prev_h2.append(hidden2)
self.q_q = hidden2[:,-1,:]
return
def new_episodic_module(self):
if True:
mem_list = []
sequences = self.inp_c_seq
for i in range(len(sequences)):
m_list = [self.q_q.clone()]
#print(sequences[i].size(),'seq')
for iter in range(self.memory_hops):
x = self.new_attention_step(sequences[i], None, m_list[iter], self.q_q)
if self.print_to_screen and not self.training:
print(x,'x -- after', len(x), sequences[i].size())
e, _ = self.new_episode_small_step(sequences[i], x.permute(1,0), None)
assert len(sequences[i].size()) == 3
#print(e.size(),'e')
ee = e[:, 0, -1]#.permute(2,1,0)
_, out = self.model_3_mem_a(ee.unsqueeze(0), self.prune_tensor(m_list[iter], 3))
m_list.append(out)
mem_list.append(m_list[self.memory_hops])
mm_list = torch.cat(mem_list, dim=1)
self.last_mem = mm_list
#print(self.last_mem.size(),'lm')
return None
def new_episode_small_step(self, ct, g, prev_h):
assert len(ct.size()) == 3
bat, sen, emb = ct.size()
#print(ct.size(),'ct')
#print(sen,'sen', g.size())
last = [prev_h]
ep = []
for iii in range(sen):
c = ct[0,iii,:].unsqueeze(0)
if prev_h is not None:
prev_h = self.prune_tensor(prev_h, 3)
out, gru = self.model_3_mem_b(c, last[iii] )
last.append(out)
g = g.squeeze(0)
gru = gru.squeeze(0).permute(1,0)
#if not self.training: print(g.size(),'g', iii)
#ggg = g[:, iii]
ggg = g[iii]
h = torch.mul(ggg , gru)# + torch.mul((1 - g[iii]) , prev_h.permute(1,0))
index = -1 #-1 # -2
if last[iii + index] is not None:
#print(last[iii].size(),'last -',ggg.size(), ggg, sen)
if False: h = h + torch.mul((1 - ggg), last[iii + index])
#print(h.size(),'hsize')
if iii == sen - 1 : ep.append(h.unsqueeze(1))
h = torch.cat(ep, dim=1)
#print(h.size(),ep[0].size(),'h',sen, gru.size())
return h, gru
def new_attention_step(self, ct, prev_g, mem, q_q):
q_q = self.prune_tensor(q_q,3)
mem = self.prune_tensor(mem,3)
assert len(ct.size()) == 3
bat, sen, emb = ct.size()
#print(sen,'len sen')
att = []
for iii in range(sen):
c = ct[0,iii,:]
concat_list = [
c.unsqueeze(0),
mem.squeeze(0),
q_q.squeeze(0),
(c * q_q).squeeze(0),
(c * mem).squeeze(0),
(torch.abs(c - q_q) ).squeeze(0),
(torch.abs(c - mem) ).squeeze(0)
]
#for ii in concat_list: print(ii.size())
#print(sen,'sen')
#exit()
#z = F.sigmoid(z)
concat_list = torch.cat(concat_list, dim=1)
#print(concat_list.size(),'cl')
att.append(concat_list)
att = torch.cat(att, dim=0)
#z = torch.cat(att, dim=0)
z = self.model_4_att(att)
z = F.sigmoid(z)
#z = F.softmax(z, dim=1) #F.sigmoid(z)
#print(z.size(),'z')
return z
def prune_tensor(self, input, size):
if len(input.size()) < size:
input = input.unsqueeze(0)
if len(input.size()) > size:
input = input.squeeze(0)
return input
def new_answer_module_simple(self):
#outputs
ansx = self.model_5_ans(self.last_mem, None)
#ansx = F.softmax(ansx, dim=0)
if self.print_to_screen:
print(ansx, 'ansx printed')
print(ansx.size(), 'ansx')
vocab, sen = ansx.size()
aa = torch.argmax(ansx, dim=0)
print(aa.size(),'aa')
for i in range(sen):
zz = aa[i]
z = ansx[:, i]
a = torch.argmax(z, dim=0)
print(a.item(), zz.item())
print('----')
#ans = torch.argmax(ansx,dim=1)#[0]
return [None], ansx
pass