我想要一个支持这些特定的1:N关系的数据结构:-
1#。 Human
加薪 0-N Human
2#。 Human
有 0-N Dog
3#。 Human
耕种 0-N Tree
4#。 Dog
是0-N Parasites
的房屋。
注意:
-这些关系中的国家都是暂时的,例如Human1
可能加薪 Human2
,但是一年之后,Human1
可能会放弃Human2
。
-所有对象均继承自BaseObject
,并具有唯一的int ID。
在以上所有关系中,我希望能够支持以下功能:-
F1。添加关系例如human_dog->addRelation(Human* a,Dog* b)
F2。删除关系human_dog->removeRelation(Human* a,Dog* b)
F3。查询所有孩子human_dog->getAllChildren(Human*)
F4。查询所有父项human_dog->getAllParents(Dog*)
F5。检查父母是否有> = 1个孩子
F6。检查孩子是否有> = 1个父母
F7。删除所有父母的孩子
F8。删除一个孩子的所有父母
这可以通过std::unordered_map
或更容易定制的东西来实现。
我想将关系1#,2#,3#(即所有实线)标记为 Feed 。
它必须以 聚集 样式支持功能F3-F8。
例如:-
feed->getAllChildren(BaseObject* b)
:b
是人类,则必须返回b
的所有抚养,有和耕种的孩子。 feed->removeAllParent(BaseObject* b)
:b
是狗,它将像cultivate->removeAllParent(b)
一样起作用。总而言之,我希望能够轻松注入这样的 聚合 。
例如调用:-
void BaseObject::declareForFreedom(){
feed->removeAllParent(this);
}
上面的示例仅显示4个关系和1个间接级别。
在我的真实情况下,这种继承/间接关系有8-10个关系和3-4个级别。
什么是适合这种情况的数据结构/设计模式?
我目前为1#-4#创建一个自定义的1:N关系,并对每个 feed 函数进行硬编码。这很乏味。
我已经猛烈抨击了几个月,但没有发现任何看起来优雅的实现。
http://coliru.stacked-crooked.com/a/1f2decd7a8d96e3c
基本类型:-
#include <iostream>
#include <map>
#include <vector>
enum class Type{
HUMAN,DOG,TREE,PARASITE,ERROR
}; //for simplicity
class BaseObject{public: Type type=Type::ERROR; };
class Human : public BaseObject{
public: Human(){ type=Type::HUMAN; }
};
class Dog : public BaseObject{
public: Dog(){ type=Type::DOG; }
};
class Tree : public BaseObject{
public: Tree(){ type=Type::TREE; }
};
class Parasite : public BaseObject{
public: Parasite(){ type=Type::PARASITE; }
};
基本的1:N地图
template<class A,class B> class MapSimple{
std::multimap<A*, B*> aToB;
std::multimap<B*, A*> bToA;
public: void addRelation(A* b1,B* b2){
aToB.insert ( std::pair<A*,B*>(b1,b2) );
bToA.insert ( std::pair<B*,A*>(b2,b1) );
}
public: std::vector<B*> queryAllChildren(A* b1){
auto ret = aToB.equal_range(b1);
auto result=std::vector<B*>();
for (auto it=ret.first; it!=ret.second; ++it){
result.push_back(it->second);
}
return result;
}
public: void removeAllParent(B* b){
if(bToA.count(b)==0)return;
A* a=bToA.find(b)->second;
bToA.erase(b);
auto iterpair = aToB.equal_range(a);
auto it = iterpair.first;
for (; it != iterpair.second; ++it) {
if (it->second == b) {
aToB.erase(it);
break;
}
}
}
//.. other functions
};
这是数据库实例和聚合:-
MapSimple<Human,Human> raise;
MapSimple<Human,Dog> has;
MapSimple<Human,Tree> cultivate;
MapSimple<Dog,Parasite> isHouseOf;
class Feed{
public: void removeAllParent(BaseObject* b1){
if(b1->type==Type::HUMAN){
raise.removeAllParent(static_cast<Human*>(b1));
}
if(b1->type==Type::DOG){
has.removeAllParent(static_cast<Dog*>(b1));
}
//.... some other condition (I have to hard code them - tedious) ...
}
//other function
};
Feed feed;
用法
int main(){
Human h1;
Dog d1,d2;
has.addRelation(&h1,&d1);
has.addRelation(&h1,&d2);
auto result=has.queryAllChildren(&h1);
std::cout<<result.size(); //print 2
feed.removeAllParent(&d1);
result=has.queryAllChildren(&h1);
std::cout<<result.size(); //print 1
}
答案 0 :(得分:1)
直接实现有什么问题?
例如: BaseObject.hpp
#include <vector>
template<class T>
using prtVector = std::vector<T*>;
class BaseObject {
public:
virtual prtVector<BaseObject> getAllParents() const = 0;
virtual prtVector<BaseObject> getAllChilderen() const = 0;
virtual void removeAllParents() = 0;
virtual void removeAllChildren() = 0;
};
Human.hpp
#include "BaseObject.hpp"
#include "Tree.hpp"
#include "Dog.hpp"
class Tree;
class Dog;
class Human : public BaseObject {
public:
prtVector<BaseObject> getAllParents() const override;
prtVector<BaseObject> getAllChildren() const override;
void removeAllParents() override;
void removeAllChildren() override ;
friend class Dog;
friend class Tree;
template<class A, class B>
friend void addRelation(A* a, B* b);
private:
void addParent(Human* const);
void removeParent(Human const* const);
void addChild(Human* const);
void removeChild(Human const* const);
void addChild(Tree* const);
void removeChild(Tree const* const);
void addChild(Dog* const);
void removeChild(Dog const* const);
private:
prtVector<Human> parents;
prtVector<Human> children;
prtVector<Tree> plants;
prtVector<Dog> pets;
};
Human.cpp
#include "Human.hpp"
prtVector<BaseObject> Human::getAllParents() const {
prtVector<BaseObject> result(std::cbegin(parents), std::cend(parents));
return result;
}
prtVector<BaseObject> Human::getAllChildren() const {
prtVector<BaseObject> result(std::cbegin(children), std::cend(children));
result.insert(std::end(result), std::cbegin(pets), std::cend(pets));
result.insert(std::end(result), std::cbegin(plants), std::cend(plants));
return result;
}
void Human::removeAllParents() {
for (auto parent : parents) { parent->removeChild(this); }
parents.clear();
}
void Human::removeAllChildren() {
for (auto child : children) { child->removeParent(this); } children.clear();
for (auto pet : pets) { pet->removeParent(this); } pets.clear();
for (auto plant : plants) { plant->removeParent(this); } plants.clear();
}
void Human::addParent(Human* const parent) { parents.push_back(parent); }
#include <algorithm>
void Human::removeParent(Human const* const parent) {
auto it = std::find(std::cbegin(parents), std::cend(parents), parent);
if (it != std::cend(parents)) parents.erase(it);
}
void Human::addChild(Human* const child) { children.push_back(child); }
等,等等...
与其他类型相同。...
main.cpp
#include "Human.hpp"
#include "Dog.hpp"
template<class A, class B>
void addRelation(A* a, B* b)
{
a->addChild(b);
b->addParent(a);
}
template<class A>
prtVector<BaseObject> queryAllChildren(A* obj)
{
return obj->getAllChilderen();
}
template<class A>
void removeAllParents(A* obj)
{
obj->removeAllParents();
}
#include <iostream>
int main() {
Human h1;
Dog d1, d2;
addRelation(&h1, &d1);
addRelation(&h1, &d2);
auto result = queryAllChildren(&h1);
std::cout << result.size() << "\n"; //print 2
removeAllParents(&d1);
result = queryAllChildren(&h1);
std::cout << result.size() << "\n"; //print 1
std::cin.ignore();
}
恕我直言,这给出了可读且可维护的代码。可能可以有所优化。但是至少从代码中关系很清楚。
答案 1 :(得分:1)
Jarod42 in this topic建议使用更好的代码。 C ++ 17风格:
break
好的,因为您不想重复的代码,所以我一直将此项目作为元编程/可变模板的初次经验。这就是我得到的:
#include <algorithm>
#include <tuple>
#include <vector>
class BaseObject {
public:
virtual ~BaseObject() = default;
virtual std::vector<BaseObject*> getAllParents() const = 0;
virtual std::vector<BaseObject*> getAllChildren() const = 0;
virtual void removeAllParents() = 0;
virtual void removeAllChildren() = 0;
};
template<typename TParentTuple, typename TChilderenTuple>
class Obj;
template<typename... ParentTags,
typename... ChildTags>
class Obj<std::tuple<ParentTags...>, std::tuple<ChildTags...>> : public BaseObject
{
std::tuple<std::vector<typename ParentTags::obj_type*>...> parents;
std::tuple<std::vector<typename ChildTags::obj_type*>...> children;
public:
template <typename T>
void addParent(T* parent) { std::get<std::vector<T*>>(parents).push_back(parent); }
template <typename T>
void removeParent(const T* parent) {
auto& v = std::get<std::vector<T*>>(parents);
auto it = std::find(std::cbegin(v), std::cend(v), parent);
if (it != std::cend(v)) { v.erase(it); }
}
template <typename T>
void addChild(T* child) { std::get<std::vector<T*>>(children).push_back(child); }
template <typename T>
void removeChild(const T* child) {
auto& v = std::get<std::vector<T*>>(children);
auto it = std::find(std::cbegin(v), std::cend(v), child);
if (it != std::cend(v)) { v.erase(it); }
}
std::vector<BaseObject*> getAllParents() const override {
std::vector<BaseObject*> res;
std::apply([&](auto&... v){ (res.insert(res.end(), v.begin(), v.end()), ...); },
parents);
return res;
}
std::vector<BaseObject*> getAllChildren() const override {
std::vector<BaseObject*> res;
std::apply([&](auto&... v){ (res.insert(res.end(), v.begin(), v.end()), ...); },
children);
return res;
}
void removeAllParents() override {
std::apply(
[this](auto&... v)
{
[[maybe_unused]] auto clean = [this](auto& v) {
for (auto* parent : v) {
parent->removeChild(this);
}
v.clear();
};
(clean(v), ...);
},
parents);
}
void removeAllChildren() override {
std::apply(
[this](auto&... v)
{
[[maybe_unused]] auto clean = [this](auto& v) {
for (auto* child : v) {
child->removeParent(this);
}
v.clear();
};
( clean(v), ...);
},
children);
}
};
struct Human_tag;
struct Tree_tag;
struct Dog_tag;
struct Parasite_tag;
using Human = Obj<std::tuple<>, std::tuple<Tree_tag, Dog_tag>>;
using Tree = Obj<std::tuple<Human_tag>, std::tuple<>>;
using Dog = Obj<std::tuple<Human_tag>, std::tuple<Parasite_tag>>;
using Parasite = Obj<std::tuple<Dog_tag>, std::tuple<>>;
struct Human_tag { using obj_type = Human; };
struct Tree_tag { using obj_type = Tree; };
struct Dog_tag { using obj_type = Dog; };
struct Parasite_tag { using obj_type = Parasite; };
template<class A, class B>
void addRelation(A* a, B* b)
{
a->addChild(b);
b->addParent(a);
}
#include <iostream>
int main() {
Human h1;
Dog d1, d2;
addRelation(&h1, &d1);
addRelation(&h1, &d2);
auto result = h1.getAllChildren();
std::cout << result.size() << "\n"; //print 2
d1.removeAllParents();
result = h1.getAllChildren();
std::cout << result.size() << "\n"; //print 1
}
请询问任何不清楚的问题,因为在过去的24小时里我一直在学习很多新东西,所以我不知道从哪里开始解释。