尝试还原模型以预测值时,“无法将feed_dict键解释为张量:'+ e.args [0])错误

时间:2018-07-02 09:46:17

标签: tensorflow

我已经训练了神经网络模型,以便在学习后预测一些目标值。

我正在保存经过训练的模型,对于该模型,我的准确性为87%。 我正在尝试恢复模型,以便通过训练后的模型预测值。

但是,我遇到了问题,无法解决。我经历了类似的问题,但是之前我无法解决。

这是我训练模型的代码:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
#import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split 
import numpy as np
import sys
#from tkinter import Tk
from sklearn.metrics import mean_squared_error, r2_score,mean_absolute_error

from datetime import datetime 
#def fooPy():
start_time = datetime.now() 

# Load the dataset
data = pd.read_csv('nn_100k.csv')

x = data.iloc[:,0:7]
y = data.iloc[:,7]
y = y.values #converting it into a numpy array
#converting the target values to a column vector
y = np.reshape(y, [y.shape[0], 1])

#Releasing the data
del data

#split the data into train and test dataset
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=4)


#Transforming the input values to a normal distribution
scaler= StandardScaler()
# Fit only to the training data
(scaler.fit(x_train))
# Now apply the transformations to the data:
x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)
total_len = x_train.shape[0]

#Training parameters
learning_rate = 0.001
training_epochs = 1000
batch_size = 8000
display_step = 1
dropout_rate = 0.9
#Number of nodes in each hidden unit
n_hidden_1 = 275
#n_hidden_2 = 75
#n_hidden_3 = 25
#Input and output layer
n_input = x_train.shape[1]
n_output = y_train.shape[1]

print('The number of input layers: %d' %n_input)
print('The number of input layers: %d' %n_output)

# tf Graph input
x = tf.placeholder("float", [None,7],name='inputs')
y = tf.placeholder("float", [None,1],name='targets')
keep_prob = tf.placeholder(tf.float32) #For drop-out

# Create model
def multilayer_perceptron(x, weights,biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    drop_out = tf.nn.dropout(layer_1,keep_prob)

    # Hidden layer with RELU activation
#    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
#    layer_2 = tf.nn.relu(layer_2)
#    drop_out = tf.nn.dropout(layer_2,keep_prob)

#    layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
#    layer_3 = tf.nn.relu(layer_3)
#    drop_out = tf.nn.dropout(layer_2,keep_prob)

    # Output layer with linear activation
    out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
    out = out = tf.sigmoid(out_layer)
    return out

# Store layers weight & bias
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 1),name='h1'),
#    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 1)),
#    'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 1)),
    'out': tf.Variable(tf.random_normal([n_hidden_1, n_output], 0, 1),name='out_weight')
#    'name': 'weights'
}

biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 1),name='b1'),
#    'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 1)),
#    'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 1)),
#    'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.1)),
    'out': tf.Variable(tf.random_normal([n_output], 0, 1),name='out_bias')
#    'name': 'biases'
}
print('Weights and biases defined')

# Construct model
pred = multilayer_perceptron(x, weights, biases)

# Define loss and optimizer
cost = tf.reduce_mean(tf.square(pred-y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
epoch_summary = 0
training_cost = 0

saver_train=tf.train.Saver()

# Launch the graph
with tf.Session() as sess:  
    sess.run(tf.global_variables_initializer())

        # Training cycle
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(total_len/batch_size)
        # Loop over all batches
        for i in range(total_batch):

            batch_x = x_train[i*batch_size:(i+1)*batch_size]
            batch_y = y_train[i*batch_size:(i+1)*batch_size]

            # Run optimization op (backprop) and cost op (to get loss value)
            _, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x, y: batch_y, keep_prob :dropout_rate})
            # Compute average loss
            avg_cost += c / total_batch
        # sample prediction
#        label_value = batch_y
#        estimate = p
#        err = label_value-estimate
            accuracy = sess.run(cost, feed_dict={x:x_test, y: y_test})
#        saver_train.save(sess,r'C:\Users\Nara\Personal\CE_TFD\Thesis\ANN\Restart_Trial\trained_model.ckpt')
#            saver_train.export_meta_graph(r'C:\Users\Nara\Personal\CE_TFD\Thesis\ANN\Restart_Trial\trained_model.meta')

        # Display logs per epoch step

        if epoch % 50 ==0:
            training_cost=np.append(training_cost,avg_cost)
            epoch_summary=np.append(epoch_summary,epoch+1)

        if epoch % display_step == 0:
            print ("Epoch:", '%04d' % (epoch+1))
            print ("Loss: ", '%.6f' %sess.run(cost, feed_dict={x:x_test, y: y_test}))
            print ("[*]----------------------------")

    print ("Optimization Finished!")

    # Test model

    predicted_vals = sess.run(pred, feed_dict={x: x_test})
    urf = sess.run(pred,feed_dict={x: x_validate})

    saver_train.save(sess,r'C:\Users\....\trained_model.ckpt')
    saver_train.export_meta_graph(r'C:\Users\...\trained_model.meta')

    ## The mean squared error
    print("Mean squared error: %.6f"
            % mean_squared_error(y_test, predicted_vals))
## Explained variance score: 1 is perfect prediction
    print('Prediction accuracy: %.6f' % r2_score(y_test, predicted_vals))
    print('Predicted URF: %.6f'%urf)
## The estimated URF value 
#    print('Estimated URF value: %.6f' %urf)        
#        plt.plot(epoch_summary,training_cost)
#    #    plt.scatter()
#        plt.show()

    time_elapsed = datetime.now() - start_time 

    print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))

这是我还原它的代码。

import tensorflow as tf
#import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import sys
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split 
#from tkinter import Tk


from datetime import datetime 
start_time = datetime.now()

data2 = pd.read_csv('x_test.csv',header=None)
x_test = data2.iloc[:]
x_test = x_test.values
del data2
# Load the dataset
data = pd.read_csv('x_validate.csv',header=None)

x_validate = data.head(1)
#x_validate = x_validate.values
del data

#data_path="C:\\Users\\Nara\\Personal\\CE_TFD\\Thesis\\ANN\\Restart_Trial"
scaler= StandardScaler()
scaler.fit(x_test)
x_test = scaler.transform(x_test)
x_validate = scaler.transform(x_validate)
#

del x_test

##Number of nodes in each hidden unit
n_hidden_1 = 325
##n_hidden_2 = 75
##n_hidden_3 = 10
##Input and output layer
n_input = 7
n_output = 1

# tf Graph input
x = tf.placeholder("float", [None,7],name='inputs')
y = tf.placeholder("float", [None,1],name='targets')
#x_validate = tf.placeholder("float", [None,7])
keep_prob = tf.placeholder(tf.float32) #For drop-out
#
# Create model
def multilayer_perceptron(x, weights,biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)
    drop_out = tf.nn.dropout(layer_1,keep_prob)
#
##    # Hidden layer with RELU activation
##    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
##    layer_2 = tf.nn.relu(layer_2)
##    drop_out = tf.nn.dropout(layer_2,keep_prob)
##    
##    layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
##    layer_3 = tf.nn.relu(layer_3)
##    drop_out = tf.nn.dropout(layer_2,keep_prob)
##    
    # Output layer with linear activation
    out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
    out = tf.sigmoid(out_layer)
    return out
#
# Store layers weight & bias
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 1),name='h1'),
##    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 1)),
##    'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 1)),
    'out': tf.Variable(tf.random_normal([n_hidden_1, n_output], 0, 1),name='out_weight')
}
#
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 1),name='b1'),
##    'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 1)),
##    'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 1)),
##    'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.1)),
    'out': tf.Variable(tf.random_normal([n_output], 0, 1),name='out_bias')
}
##
##
pred = multilayer_perceptron(x,weights,biases)

#saver_train=tf.train.Saver({"weights": weights,"biases": biases})

tf.reset_default_graph()

#saver = tf.train.import_meta_graph('C:\\Users\\Nara\\Personal\\CE_TFD\\Thesis\\ANN\\Restart_Trial\\trained_model.ckpt.meta')
#graph = tf.get()
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.import_meta_graph('C:\\Users\\Nara\\Personal\\CE_TFD\\Thesis\\ANN\\Restart_Trial\\trained_model.ckpt.meta')
    graph = sess.graph

    saver.restore(sess,tf.train.latest_checkpoint('./'))
    print(sess.run(['h1:0'])) #Checking if the weights are restored

    urf = sess.run(pred, feed_dict={x: x_validated})
    print('Estimated URF value: %.6f' %urf)

    time_elapsed = datetime.now() - start_time 

    print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))

我正在收到此错误“无法将feed_dict键解释为张量:'+ e.args [0])” TypeError:无法将feed_dict键解释为张量:Tensor Tensor(“ inputs_4:0“,shape =(?, 7),dtype = float32)不是该图的元素。

0 个答案:

没有答案