系统发育模型,每个物种使用多个条目

时间:2018-07-02 08:50:09

标签: mixed-models phylogeny

对于系统发育回归模型,我还比较陌生。过去,当树中每个物种只有1个条目时,我使用PGLS。现在,我有一个包含数千个记录的数据集,总共有9种物种,我想运行一个系统发育模型。我阅读了最常用软件包的教程(例如,雀跃),但不确定如何构建模型。

当我尝试创建用于雀跃的对象时,即使用:

obj <- comparative.data(phy = Tree, data = Data, names.col = species, vcv = TRUE, na.omit = FALSE, warn.dropped = TRUE)

我收到消息:

  

row.names<-.data.frame*tmp*,值=值)中的错误:     不允许重复的“ row.names”   另外:警告消息:   设置“ row.names”时的非唯一值:“ Species1”,“ Species2”,“ Species3”,“ Species4”,“ Species5”,“ Species6”,“ Species7”,“ Species8”,“ Species9”

我知道我可以通过应用MCMCglmm模型来解决此问题,但是我不熟悉贝叶斯模型。

在此先感谢您的帮助。

1 个答案:

答案 0 :(得分:0)

这确实不适用于caper中的简单PGLS,因为它不能作为随机效应来对待个人。我建议您使用MCMCglmm,它理解起来并不复杂,并且可以使您具有随机效果。您可以从软件包的作者herehere中找到出色的文档,也可以从替代文档中找到更多有关软件包某些特定方面(即树的不确定性)的文档here

真的很简短,可以帮助您:

## Your comparative data
comp_data <- comparative.data(phy = my_tree, data =my_data,
      names.col = species, vcv = TRUE)

请注意,您可以拥有一个如下所示的标本栏:

   taxa        var1 var2 specimen
1     A  0.08730689    a    spec1
2     B  0.47092692    a    spec1
3     C -0.26302706    b    spec1
4     D  0.95807782    b    spec1
5     E  2.71590217    b    spec1
6     A -0.40752058    a    spec2
7     B -1.37192856    a    spec2
8     C  0.30634567    b    spec2
9     D -0.49828379    b    spec2
10    E  1.42722363    b    spec2

然后您可以设置公式(类似于简单的lm公式):

## Your formula
my_formula <- variable1 ~ variable2

以及您的MCMC设置:

## Setting the prior list (see the MCMCglmm course notes for details)
prior <- list(R = list(V=1, nu=0.002),
              G = list(G1 = list(V=1, nu=0.002)))

## Setting the MCMC parameters
## Number of interations
nitt <- 12000

## Length of burnin
burnin <- 2000

## Amount of thinning
thin <- 5

然后您应该可以运行默认的MCMCglmm

## Extracting the comparative data
mcmc_data <- comp_data$data

## As MCMCglmm requires a colume named animal for it to identify it as a phylo
## model we include an extra colume with the species names in it.
mcmc_data <- cbind(animal = rownames(mcmc_data), mcmc_data)
mcmc_tree <- comp_data$phy

## The MCMCglmmm
mod_mcmc <- MCMCglmm(fixed = my_formual, 
                     random = ~ animal + specimen, 
                     family = "gaussian",
                     pedigree = mcmc_tree, 
                     data = mcmc_data,
                     nitt = nitt,
                     burnin = burnin,
                     thin = thin,
                     prior = prior)