我有一个数据表。
require(data.table)
require(lubridate)
testDT <- data.table(dateA = c(NA,NA), dateB = c(ymd("20110101"),ymd("20100101")))
testDT
# dateA dateB
# 1: NA 2011-01-01
# 2: NA 2010-01-01
我想执行以下操作:如果dateA为NA,则使用与dateB中相同的值。我尝试了以下命令:
> testDT[is.na(dateA), dateA := dateB]
Warning message:
In `[.data.table`(testDT, is.na(dateA), `:=`(dateA, dateB)) :
Coerced 'double' RHS to 'logical' to match the column's type; may have truncated precision. Either change the target column ['dateA'] to 'double' first (by creating a new 'double' vector length 2 (nrows of entire table) and assign that; i.e. 'replace' column), or coerce RHS to 'logical' (e.g. 1L, NA_[real|integer]_, as.*, etc) to make your intent clear and for speed. Or, set the column type correctly up front when you create the table and stick to it, please.
如您所见,出现警告,结果很奇怪:
> testDT
dateA dateB
1: TRUE 2011-01-01
2: TRUE 2010-01-01
为什么不起作用?
P.S。我知道我们可以使用:
> testDT[,dateA := ifelse(is.na(dateA), dateB, dateA)]
> testDT
dateA dateB
1: 14975 2011-01-01
2: 14610 2010-01-01
> testDT[,dateA := as.Date(dateA, origin = "1970-01-01")]
> testDT
dateA dateB
1: 2011-01-01 2011-01-01
2: 2010-01-01 2010-01-01
答案 0 :(得分:1)
您收到该警告消息是因为dateA
列的类别不正确(@ Emmanuel-Lin已经提到过):
> str(testDT) Classes ‘data.table’ and 'data.frame': 2 obs. of 2 variables: $ dateA: logi NA NA $ dateB: Date, format: "2011-01-01" "2010-01-01" - attr(*, ".internal.selfref")=<externalptr>
可能的解决方案是首先使用dateA
或data.table的内置日期函数将as.Date
列转换为日期类:
# convert 'dateA'-column to 'Date'- class first
testDT[, dateA := as.Date(dateA)] # alternatively: as.IDate(dateA)
# fill the 'NA' values in the 'dateA'-column
testDT[is.na(dateA), dateA := dateB][]
给出:
> testDT dateA dateB 1: 2011-01-01 2011-01-01 2: 2010-01-01 2010-01-01
答案 1 :(得分:0)
由于第一列中仅包含NA,因此它会猜测是逻辑的。
如果添加一个不是NA的元素,则效果很好:
您的示例还包含一个元素
library(ggeffects)
library(sjmisc) # to preserve labels
data(efc)
# prepare data, create binary outcome and make
# numeric variables categorical
efc$neg_c_7d <- dicho(efc$neg_c_7)
efc$c161sex <- to_factor(efc$c161sex)
efc$c172code <- to_factor(efc$c172code)
# fit logistic regression
m <- glm(
neg_c_7d ~ c12hour + c161sex * c172code,
data = efc,
family = binomial(link = "logit")
)
# compute and plot marginal effects
ggpredict(m, c("c172code", "c161sex")) %>% plot()
结果:
require(data.table)
require(lubridate)
testDT <- data.table(dateA = c(NA,NA, ymd("20110101")), dateB = c(ymd("20110101"),ymd("20100101"), ymd("20100101")))
testDT[is.na(dateA), dateA := dateB]
那你为什么只有NA?