我正在尝试关注情绪分析的在线教程。代码:
new_sentiments <- sentiments %>% #From the tidytext package
filter(lexicon != "loughran") %>% #Remove the finance lexicon
mutate( sentiment = ifelse(lexicon == "AFINN" & score >= 0, "positive",
ifelse(lexicon == "AFINN" & score < 0,
"negative", sentiment))) %>%
group_by(lexicon) %>%
mutate(words_in_lexicon = n_distinct(word)) %>%
ungroup()
产生错误:
>Error in filter_impl(.data, quo) :
>Evaluation error: object 'lexicon' not found.
有关,也许对我来说,“情感”表的行为很奇怪(损坏了吗?)。这是“情感”的标题:
> head(sentiments,3)
> element_id sentence_id word_count sentiment
> chapter
> 1 1 1 7 0 The First Book of Moses:
> Called Genesis
> 2 2 1 NA 0 The First Book of Moses:
> Called Genesis
> 3 3 1 NA 0 The First Book of Moses: >
> Called Genesis
> category
> 1 The First Book of Moses: Called Genesis
> 2 The First Book of Moses: Called Genesis
> 3 The First Book of Moses: Called Genesis
但是,如果我将Get_Sentiments用于bing,AFINN或NRC,则得到的响应看起来很合适:
> get_sentiments("bing")
> # A tibble: 6,788 x 2
> word sentiment
> <chr> <chr> > 1 2-faced negative
> 2 2-faces negative
> 3 a+ positive
> 4 abnormal negative
我试图删除(删除软件包)并重新安装tidytext;行为无变化。我正在运行R 3.5
即使我完全误解了问题,也希望任何人都能给我提供任何见解。
答案 0 :(得分:1)
看来tidytext
必须更改,这破坏了教程中的某些代码。
要使代码运行,请替换
new_sentiments <- sentiments %>% #From the tidytext package
filter(lexicon != "loughran") %>% #Remove the finance lexicon
mutate( sentiment = ifelse(lexicon == "AFINN" & score >= 0, "positive",
ifelse(lexicon == "AFINN" & score < 0,
"negative", sentiment))) %>%
group_by(lexicon) %>%
mutate(words_in_lexicon = n_distinct(word)) %>%
ungroup()
使用
new_sentiments <- get_sentiments("afinn")
names(new_sentiments)[names(new_sentiments) == 'value'] <- 'score'
new_sentiments <- new_sentiments %>% mutate(lexicon = "afinn", sentiment = ifelse(score >= 0, "positive", "negative"),
words_in_lexicon = n_distinct((word)))
接下来的几张图没有太大意义(因为我们现在仅使用一个词典),但是本教程的其余部分都可以使用
更新 here是tidytext
软件包作者对所发生情况的很好解释。
答案 1 :(得分:1)
以下说明将修复Data Camp tutorial中显示的new_sentiments
数据集。
bing <- get_sentiments("bing") %>%
mutate(lexicon = "bing",
words_in_lexicon = n_distinct(word))
nrc <- get_sentiments("nrc") %>%
mutate(lexicon = "nrc",
words_in_lexicon = n_distinct(word))
new_sentiments <- bind_rows(new_sentiments, bing, nrc)
接下来的说明将按照最初的意图显示“按词典统计的字数”表。
new_sentiments %>%
group_by(lexicon, sentiment, words_in_lexicon) %>%
summarise(distinct_words = n_distinct(word)) %>%
ungroup() %>%
spread(sentiment, distinct_words) %>%
mutate(lexicon = color_tile("lightblue", "lightblue")(lexicon),
words_in_lexicon = color_bar("lightpink")(words_in_lexicon)) %>%
my_kable_styling(caption = "Word Counts per Lexicon")
后续图形也将起作用!
答案 2 :(得分:0)
我发现了类似的问题,我在下面尝试了此代码, 希望对您有帮助
library(tm)
library(tidyr)
library(ggthemes)
library(ggplot2)
library(dplyr)
library(tidytext)
library(textdata)
# Choose the bing lexicon
get_sentiments("bing")
get_sentiments("afinn")
get_sentiments("nrc")
#define new
afinn=get_sentiments("afinn")
bing=get_sentiments("bing")
nrc=get_sentiments("nrc")
#check
head(afinn)
head(bing)
head(nrc)
head(sentiments) #from tidytext packages
#merging dataframe
merge_sentiments=rbind(sentiments,get_sentiments('bing'),get_sentiments('nrc'))
head(merge_sentiments) #check
merge2_sentiments=merge(merge_sentiments,afinn,by=1,all=T)
head(merge2_sentiments) #check
#make new data frame with column lexicon added
new_sentiments <- merge2_sentiments
new_sentiments <- new_sentiments %>%
mutate(lexicon=ifelse(sentiment=='positive','bing',ifelse(sentiment=='negative','bing',ifelse(sentiment=='NA','afinn','nrc'))))
colnames(new_sentiments)[colnames(new_sentiments)=='value']='score'
#check
head(new_sentiments)