我正在尝试编写一个函数,其返回类型取决于其输入之一的值。
在Idris中,这很简单:
module Dependent
IntOrChar : Bool -> Type
IntOrChar True = Int
IntOrChar False = Char
fun : (x : Bool) -> IntOrChar x
fun True = 10
fun False = 'a'
具有这些定义:
λΠ> fun True
10 : Int
λΠ> fun False
'a' : Char
我的问题是:我可以在Haskell中以简单的方式做类似的事情吗?
我想我可以使用类似this question之类的东西,但是我不知道如何正确使用它们。
这有效:
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
module Main where
import Data.Singletons.Prelude
type family IntOrChar (x :: Bool) where
IntOrChar True = Int
IntOrChar False = Char
fun :: SBool b -> IntOrChar b
fun b = case b of
STrue -> 10
SFalse -> 'a'
...
λ fun STrue
10
λ fun SFalse
'a'
但是它要求我使用SBool
而不是普通的Bool
。我宁愿将其用作fun True
。
有没有办法使Haskell中的fun : (x : Bool) -> IntOrChar x
等效?
答案 0 :(得分:0)
我将通过提出一个更复杂的从属类型函数(例如Idris中卡住的门示例)以及在Haskell中如何做到这一点来扩大我的问题。
但是我找到了答案here。这是使用该卡纸的示例,供参考。
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE RankNTypes #-}
module Door where
import Data.Kind
import Data.Singletons.Prelude
import Data.Singletons.TH
import Data.Promotion.TH
$(singletons [d|
data DoorState = DoorOpen | DoorClosed
data DoorResult = Jammed | OK
|])
$(promote [d|
tryOpen :: DoorResult -> DoorState
tryOpen Jammed = DoorClosed
tryOpen OK = DoorOpen
|])
data DoorCmd (res :: k) (s :: DoorState) (f :: k ~> DoorState) where
Open :: forall check. DoorCmd check DoorClosed TryOpenSym0
Close :: DoorCmd '() DoorOpen (ConstSym1 'DoorClosed)
Knock :: DoorCmd '() state (ConstSym1 state)
Pure :: forall (res :: k) (state_fn :: k ~> DoorState). Sing res -> DoorCmd res (state_fn @@ res) state_fn
(:>>=) :: forall (a :: k1) (b :: k2) (state1 :: DoorState) (state2_fn :: k1 ~> DoorState) (state3_fn :: k2 ~> DoorState).
DoorCmd a state1 state2_fn ->
(Sing a -> DoorCmd b (state2_fn @@ a) state3_fn) ->
DoorCmd b state1 state3_fn
doorOps :: DoorCmd '() DoorClosed (ConstSym1 'DoorClosed)
doorOps = do
Knock
result <- Open
case result of
SJammed -> Knock
SOK -> Close
where
(>>=) = (:>>=)
(>>) a k = a :>>= \_ -> k
return = Pure