Scikit学习:使用DBSCAN进行聚类后,绘制的点数少于初始数据样本

时间:2018-07-01 14:45:58

标签: python scikit-learn dbscan

当我发现绘制的点数不及初始样本数时,我正在使用scikit-learn库中的DBSCAN实现。 特别是,在DBSCAN http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html的官方演示中,自动生成了750个样本。但是,当我打印每个聚类有多少个点以及有多少离群值时,结果是: 群组1:224, 聚类2:228, 类别3:227, 观众人数:18, -> TOTAL =697。从下面的代码中可以看到,我刚刚在原始代码中添加了几行,以为每个聚类打印点数和离群数。我对此感到困惑,我想知道为什么会这样以及缺少的地方在哪里。 预先感谢您的回答!

print(__doc__)

import numpy as np

from sklearn.cluster import DBSCAN
from sklearn import metrics
from sklearn.datasets.samples_generator import make_blobs
from sklearn.preprocessing import StandardScaler


# #############################################################################
# Generate sample data
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
                            random_state=0)


X = StandardScaler().fit_transform(X)

# #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_

n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)



print('Estimated number of clusters: %d' % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
      % metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
      % metrics.adjusted_mutual_info_score(labels_true, labels))
print("Silhouette Coefficient: %0.3f"
      % metrics.silhouette_score(X, labels))

# #############################################################################
# Plot result
import matplotlib.pyplot as plt


unique_labels = set(labels)

i=1
for k in zip(unique_labels):

      class_member_mask = (labels == k)

      if k == (-1,):
        xy = X[class_member_mask & ~core_samples_mask]
        current_outliers = len(xy)
        print "OUTLIERS :", current_outliers
      else:
        xy = X[class_member_mask & core_samples_mask]
        print "CLUSTER", i, " :",len(xy)
      i+=1 

colors = [plt.cm.Spectral(each)
          for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
    if k == -1:`enter code here`
        col = [0, 0, 0, 1]

    class_member_mask = (labels == k)

    xy = X[class_member_mask & core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
             markeredgecolor='k', markersize=14)

    xy = X[class_member_mask & ~core_samples_mask]
    plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
             markeredgecolor='k', markersize=6)

plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()

1 个答案:

答案 0 :(得分:2)

您的地块中仅包含core samples。如果要考虑所有点,请删除core_samples_mask上的约束:

  if k == (-1,):
    xy = X[class_member_mask]
    current_outliers = len(xy)
    print "OUTLIERS :", current_outliers
  else:
    xy = X[class_member_mask]
    print "CLUSTER", i, " :",len(xy)
  i+=1