我正在尝试cuda,观察到我调用
时数据已从主机复制到设备cufftExecR2C(plan, src, dst);
我不理解的,因为我的 src 指针是我要转换的设备内存的有效句柄。在cufftExecR2C(...)之前,我按如下方式初始化了参数:
float* src;
cudaMalloc((&src), image_rows * image_cols * sizeof(float) );
cudaMemcpy(src, image.data() , image_rows * image_cols * sizeof(float) , cudaMemcpyHostToDevice);
cufftComplex* dst;
cudaMalloc((void**)&dst , image_rows * (image_cols/2+1) * sizeof(cufftComplex) );
cufftHandle plan;
cufftPlan2d(&plan, image_rows, image_cols, CUFFT_R2C))
启动nvidia分析器(nvprof)-仅考虑fft-我得到以下结果
...
cudaProfilerStart();
cufftExecR2C(plan, src, dst);
cudaProfilerStop();
...
我想避免3个不必要的主机到设备的复制调用。我看不到cuda为什么执行这些附加副本(特别是为什么要主机到设备-数据已经在设备内存中)?
程序使用Cuda 8.0在GeForce GT 540M上执行。
谢谢!
答案 0 :(得分:1)
尽管您对在执行cufftExecR2C
期间cuFFT执行不必要的数据传输的主张非常认真,但可以证明事实并非如此。
请考虑以下示例,将您在问题中提供的代码片段拼凑在一起:
#include "cufft.h"
#include "cuda_profiler_api.h"
#include <random>
#include <algorithm>
#include <iterator>
#include <iostream>
#include <functional>
int main()
{
const int image_rows = 1600, image_cols = 2048;
std::random_device rnd_device;
std::mt19937 mersenne_engine {rnd_device()};
std::uniform_real_distribution<float> dist {0.0, 255.0};
auto gen = [&dist, &mersenne_engine](){
return dist(mersenne_engine);
};
std::vector<float> image(image_rows * image_cols);
std::generate(std::begin(image), std::end(image), gen);
float* src;
cudaMalloc((&src), image_rows * image_cols * sizeof(float) );
cudaMemcpy(src, &image[0], image_rows * image_cols * sizeof(float) , cudaMemcpyHostToDevice);
cufftComplex* dst;
cudaMalloc((void**)&dst , image_rows * (image_cols/2+1) * sizeof(cufftComplex) );
cufftHandle plan;
cufftPlan2d(&plan, image_rows, image_cols, CUFFT_R2C);
cudaProfilerStart();
cufftExecR2C(plan, src, dst);
cudaProfilerStop();
return 0;
}
我为您的图像替换了一个随机值数组。现在,我们对其进行编译和分析:
$ nvcc -std=c++11 -o unecessary unecessary.cu -lcufft
$ nvprof ./unecessary
==10314== NVPROF is profiling process 10314, command: ./unecessary
==10314== Profiling application: ./unecessary
==10314== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 74.39% 2.2136ms 1 2.2136ms 2.2136ms 2.2136ms [CUDA memcpy HtoD]
6.66% 198.30us 1 198.30us 198.30us 198.30us void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>)
6.50% 193.47us 1 193.47us 193.47us 193.47us void spRadix0025B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=64, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>)
6.25% 185.98us 1 185.98us 185.98us 185.98us void spVector1024C::kernelMem<unsigned int, float, fftDirection_t=-1, unsigned int=2, unsigned int=5, LUT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_t, unsigned int, float>)
6.20% 184.38us 1 184.38us 184.38us 184.38us __nv_static_45__32_spRealComplex_compute_70_cpp1_ii_1f28721c__ZN13spRealComplex24postprocessC2C_kernelMemIjfL9fftAxii_t3EEEvP7ComplexIT0_EPKS4_T_15coordDivisors_tIS8_E7coord_tIS8_ESC_S8_S3_10callback_t
[为简洁起见,删除了API调用]
看来您是对的! GPU摘要统计信息中有一个巨大的memcpy
!
所以让我们再次正确地配置文件:
$ nvprof --profile-from-start off ./unecessary
==11674== NVPROF is profiling process 11674, command: ./unecessary
==11674== Profiling application: ./unecessary
==11674== Profiling result:
Type Time(%) Time Calls Avg Min Max Name
GPU activities: 25.96% 196.28us 1 196.28us 196.28us 196.28us void spRadix0064B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=32, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>)
25.25% 190.91us 1 190.91us 190.91us 190.91us void spRadix0025B::kernel1Mem<unsigned int, float, fftDirection_t=-1, unsigned int=64, unsigned int=4, CONSTANT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_radix1_t, unsigned int, float>)
24.65% 186.39us 1 186.39us 186.39us 186.39us void spVector1024C::kernelMem<unsigned int, float, fftDirection_t=-1, unsigned int=2, unsigned int=5, LUT, ALL, WRITEBACK>(kernel_parameters_t<fft_mem_t, unsigned int, float>)
24.15% 182.59us 1 182.59us 182.59us 182.59us __nv_static_45__32_spRealComplex_compute_70_cpp1_ii_1f28721c__ZN13spRealComplex24postprocessC2C_kernelMemIjfL9fftAxii_t3EEEvP7ComplexIT0_EPKS4_T_15coordDivisors_tIS8_E7coord_tIS8_ESC_S8_S3_10callback_t
[为简洁起见,再次删除了API调用]
memcpy
不见了。分析器报告的全部是与转换执行相关的四个内核启动。没有内存传输。原始探查器输出中报告的内存传输是程序开始时主机到设备的传输,与cuFFT调用无关。包含它的原因是nvprof默认从程序执行开始就开始分析,并且最初的cudaProfilerStart
调用无效,因为已经进行了分析。您可以在工具链文档here中了解配置文件代码的正确方法。
在没有承诺的MCVE的情况下,我将提供自己的假设-您没有正确使用分析器,并且报告的传输实际上是代码中其他地方发生的传输,并且包含在分析器中输出,但与cuFFT的操作完全无关。