我想将数据框的所有非浮点类型列都转换为浮点,有什么办法可以实现。如果我可以在One Go中完成,那将很棒。 下面是类型
longitude - float64
latitude - float64
housing_median_age - float64
total_rooms - float64
total_bedrooms - object
population - float64
households - float64
median_income - float64
rooms_per_household - float64
category_<1H OCEAN - uint8
category_INLAND - uint8
category_ISLAND - uint8
category_NEAR BAY - uint8
category_NEAR OCEAN - uint8
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
df = pd.DataFrame(housing)
df['ocean_proximity'] = pd.Categorical(df['ocean_proximity']) #type casting
dfDummies = pd.get_dummies(df['ocean_proximity'], prefix = 'category' )
df = pd.concat([df, dfDummies], axis=1)
print df.head()
housingdata = df
hf = housingdata.drop(['median_house_value','ocean_proximity'], axis=1)
hl = housingdata[['median_house_value']]
hf.fillna(hf.mean,inplace = True)
hl.fillna(hf.mean,inplace = True)
答案 0 :(得分:6)
如果您不需要对向下转换或错误处理进行特定控制,一种快速简便的方法是使用df = df.astype(float)
。
要获得更多控制,可以使用pd.DataFrame.select_dtypes
按dtype选择列。然后在列的子集上使用pd.to_numeric
。
设置
df = pd.DataFrame([['656', 341.341, 4535],
['545', 4325.132, 562]],
columns=['col1', 'col2', 'col3'])
print(df.dtypes)
col1 object
col2 float64
col3 int64
dtype: object
解决方案
cols = df.select_dtypes(exclude=['float']).columns
df[cols] = df[cols].apply(pd.to_numeric, downcast='float', errors='coerce')
结果
print(df.dtypes)
col1 float32
col2 float64
col3 float32
dtype: object
print(df)
col1 col2 col3
0 656.0 341.341 4535.0
1 545.0 4325.132 562.0
答案 1 :(得分:0)
枚举转换为数字并插入到新的数据框
New_DataFrame = pd.DataFrame()
x = {New_DataFrame.insert(i, name, pd.to_numeric(df[name], errors = "coerce"), True) if(df[name].dtype.name=='object') else New_DataFrame.insert(i, name, df[name], True) for i, name in enumerate(df.columns)}
print(New_DataFrame.head())`