当我学习一种新语言时,我要做的第一件事是通读快速傅立叶变换实现并尝试使其工作。这是我非常熟悉的算法-因此可以帮助我理解该语言的工作原理。
当前,我正在阅读Roman Cheplyaka的this实现。我现在已经非常严格地遵循了该算法,并且一切似乎都能按预期工作,但是下面的代码对我抛出了很多错误:(特别是squareMap
部分抛出了错误)
evalFourier coeffs pts = do
let
squares = nub $ u_sqr <$> pts -- values of x^2
(even_coeffs, odd_coeffs) = split coeffs
even_values <- evalFourier even_coeffs squares
odd_values <- evalFourier odd_coeffs squares
let
-- a mapping from x^2 to (A_e(x^2), A_o(x^2))
square_map =
Map.fromList
. zip squares
$ zip even_values odd_values
-- evaluate the polynomial at a single point
eval1 :: U -> Writer (Sum Int) (Complex a)
eval1 x = do
let (ye,yo) = (square_map Map.! u_sqr x)
r = ye + toComplex x * yo
tell $ Sum 2 -- this took two arithmetic operations
return r
mapM eval1 pts
请注意,Map
是Data.Map
的缩写,这是在实现中定义的一些非标准库函数:
-- | U q corresponds to the complex number exp(2 i pi q)
newtype U = U Rational
deriving (Show, Eq, Ord)
-- | Convert a U number to the equivalent complex number
toComplex :: Floating a => U -> Complex a
toComplex (U q) = mkPolar 1 (2 * pi * realToFrac q)
-- | Smart constructor for U numbers; automatically performs normalization
mkU :: Rational -> U
mkU q = U (q - realToFrac (floor q))
-- | Raise a U number to a power
uPow :: U -> Integer -> U
uPow (U q) p = mkU (fromIntegral p*q)
-- | Square a U number
uSqr :: U -> U
uSqr x = uPow x 2
这是我运行stack build
后显示的错误:
src\FFT.hs:43:13: error:
* Couldn't match type `a' with `a1'
`a' is a rigid type variable bound by
the type signature for:
evalFourier :: forall a.
RealFloat a =>
[Complex a] -> [U] -> Writer (Sum Int) [Complex a]
at src\FFT.hs:(19,1)-(22,35)
`a1' is a rigid type variable bound by
the type signature for:
eval1 :: forall a1. U -> Writer (Sum Int) (Complex a1)
at src\FFT.hs:38:9-50
Expected type: WriterT
(Sum Int) Data.Functor.Identity.Identity (Complex a1)
Actual type: WriterT
(Sum Int) Data.Functor.Identity.Identity (Complex a)
* In a stmt of a 'do' block: return r
In the expression:
do let (ye, yo) = (squareMap Map.! uSqr x)
r = ye + toComplex x * yo
tell $ Sum 2
return r
In an equation for `eval1':
eval1 x
= do let (ye, yo) = ...
....
tell $ Sum 2
return r
* Relevant bindings include
r :: Complex a (bound at src\FFT.hs:41:17)
ye :: Complex a (bound at src\FFT.hs:40:18)
yo :: Complex a (bound at src\FFT.hs:40:21)
eval1 :: U -> Writer (Sum Int) (Complex a1)
(bound at src\FFT.hs:39:9)
squareMap :: Map.Map U (Complex a, Complex a)
(bound at src\FFT.hs:33:9)
oddValues :: [Complex a] (bound at src\FFT.hs:30:5)
(Some bindings suppressed; use -fmax-relevant-binds=N or -fno-max-relevant-binds)
|
43 | return r
| ^^^^^^^^
-- While building custom Setup.hs for package FastFourier-0.1.0.0 using:
C:\sr\setup-exe-cache\x86_64-windows\Cabal-simple_Z6RU0evB_2.0.1.0_ghc-8.2.2.exe --builddir=.stack-work\dist\5c8418a7 build lib:FastFourier exe:FastFourier-exe --ghc-options " -ddump-hi -ddump-to-file -fdiagnostics-color=always"
Process exited with code: ExitFailure 1
任何人都可以指出是什么导致我在这里看到的错误吗?我感觉到此错误与let (ye,yo) = (square_map Map.! u_sqr x)
行有关。谢谢。
答案 0 :(得分:5)
您似乎从链接代码中缺少了两段:
constructor
位于顶部,
{-# LANGUAGE ScopedTypeVariables #-}
作为evalFourier
:: forall a . RealFloat a
=> [Complex a] -- ^ polynomial coefficients, starting from a_0
-> [U] -- ^ points at which to evaluate the polynomial
-> Writer (Sum Int) [Complex a]
的类型签名。
在没有evalFourier
的情况下,两个ScopedTypeVariables
类型的变量(类型为a
和嵌套的evalFourier
)是独立的。特别是,eval1 :: U -> Writer (Sum Int) (Complex a)
的类型指定了完全通用的结果类型,该函数类型与功能体不匹配。
对于eval1
,ScopedTypeVariables
类型的内部a
指的是eval1
定义的外部a
。
forall a. ...
构造是pragma(编译器指令)。
LANGUAGE
pragma启用语言扩展。
请参阅Language.Haskell.Extension
,以获取GHC可以理解的语言扩展列表,尤其是{-# LANGUAGE ... #-}
的{{3}}。