我是新手,使用pyimagesearch代码通过python 2.7和opencv进行球跟踪。
https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/
我正在尝试将跟踪对象的x,y坐标写入.csv文件。我将pts转换为字符串,然后写入.csv文件。我得到一组这样的数字:(255 386)(266 399)这些是x,y坐标吗?如果是的话,它们相对于图像意味着什么?
#import the necessary packages
from collections import deque
from imutils.video import VideoStream
import numpy as np
import argparse
import cv2
import imutils
import time
import csv
#construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video",
help="path to the (optional) video file")
ap.add_argument("-b", "--buffer", type=int, default=64,
help="max buffer size")
args = vars(ap.parse_args())
#define the lower and upper boundaries of the "green"
#ball in the HSV color space, then initialize the
#list of tracked points
greenLower = (0, 0, 0)
greenUpper = (180, 255, 40)
pts = deque(maxlen=args["buffer"])
#if a video path was not supplied, grab the reference
#to the webcam
if not args.get("video", False):
vs = VideoStream(src=0).start()
#otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
#allow the camera or video file to warm up
time.sleep(2.0)
#keep looping
while True:
#grab the current frame
frame = vs.read()
#handle the frame from VideoCapture or VideoStream
frame = frame[1] if args.get("video", False) else frame
#if we are viewing a video and we did not grab a frame,
#then we have reached the end of the video
if frame is None:
break
#resize the frame, blur it, and convert it to the HSV
#color space
frame = imutils.resize(frame, width=600)
blurred = cv2.GaussianBlur(frame, (11, 11), 0)
hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)
#construct a mask for the color "green", then perform
#a series of dilations and erosions to remove any small
#blobs left in the mask
mask = cv2.inRange(hsv, greenLower, greenUpper)
mask = cv2.erode(mask, None, iterations=2)
mask = cv2.dilate(mask, None, iterations=2)
#find contours in the mask and initialize the current
#(x, y) center of the ball
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
center = None
#only proceed if at least one contour was found
if len(cnts) > 0:
#find the largest contour in the mask, then use
#it to compute the minimum enclosing circle and
#centroid
c = max(cnts, key=cv2.contourArea)
((x, y), radius) = cv2.minEnclosingCircle(c)
M = cv2.moments(c)
center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"]))
#only proceed if the radius meets a minimum size
if radius > 10:
#draw the circle adn centroid on the frame,
#then update the list of tracked points
cv2.circle(frame, (int(x), int(y)), int(radius),(0, 255, 255), 2)
cv2.circle(frame, center, 5, (0, 0, 225), -1)
#update the points queue
pts.appendleft(center)
#loop over the set of tracket points
for i in range(1, len(pts)):
#if either of the tracked points are None, ignore
#them
if pts[i - 1] is None or pts[i] is None:
continue
#otherwise, compute the thickness of the line and
#draw the connecting lines
thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5)
cv2.line(frame, pts[i - 1], pts[i], (0, 0, 225), thickness)
#write info to file
f = open("foo11.csv", "w+")
s = str(pts)
f.write(s)
f.close()
#show the frame to our screen
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
#if the 'q' key is press, stop the loop
if key == ord("q"):
break
#if we are not using a video file, stop the camera video stream
if not args.get("video", False):
vs.stop()
#otherwise, release the camera
else:
vs.release()
#close all windows
cv2.destroyAllWindows()