我尝试将多个新的dataFrame合并到一个主框架中。 假设主数据框:
key1 key2
0 0.365803 0.259112
1 0.086869 0.589834
2 0.269619 0.183644
3 0.755826 0.045187
4 0.204009 0.669371
然后我尝试将以下两个数据集合并到主要数据集中,
新数据1:
key1 key2 new feature
0 0.365803 0.259112 info1
新数据2:
key1 key2 new feature
0 0.204009 0.669371 info2
预期结果:
key1 key2 new feature
0 0.365803 0.259112 info1
1 0.776945 0.780978 NaN
2 0.275891 0.114998 NaN
3 0.667057 0.373029 NaN
4 0.204009 0.669371 info2
我尝试过的事情:
test = test.merge(data1, left_on=['key1', 'key2'], right_on=['key1', 'key2'], how='left')
test = test.merge(data2, left_on=['key1', 'key2'], right_on=['key1', 'key2'], how='left')
第一个效果很好,但第二个效果不好:
key1 key2 new feature_x new feature_y
0 0.365803 0.259112 info1 NaN
1 0.776945 0.780978 NaN NaN
2 0.275891 0.114998 NaN NaN
3 0.667057 0.373029 NaN NaN
4 0.204009 0.669371 NaN info2
感谢您的帮助!
答案 0 :(得分:2)
首先append
或concat
两个DataFrame
在一起,然后merge
:
dat = pd.concat([data1, data2], ignore_index=True)
或者:
dat = data1.append(data2, ignore_index=True)
print (dat)
key1 key2 new feature
0 0.365803 0.259112 info1
1 0.204009 0.669371 info2
#if same joined columns names better is only on parameter
df = test.merge(dat, on=['key1', 'key2'], how='left')
print (df)
key1 key2 new feature
0 0.365803 0.259112 info1
1 0.086869 0.589834 NaN
2 0.269619 0.183644 NaN
3 0.755826 0.045187 NaN
4 0.204009 0.669371 info2
答案 1 :(得分:0)
您可以改用pd.DataFrame.update
:
# create new column and set index
res = test.assign(newfeature=None).set_index(['key1', 'key2'])
# update with new data sequentially
res.update(data1.set_index(['key1', 'key2']))
res.update(data2.set_index(['key1', 'key2']))
# reset index to recover columns
res = res.reset_index()
print(res)
key1 key2 newfeature
0 0.365803 0.259112 info1
1 0.086869 0.589834 None
2 0.269619 0.183644 None
3 0.755826 0.045187 None
4 0.204009 0.669371 info2
答案 2 :(得分:0)
您还可以将数据帧设置为相同的索引,并使用简单的loc
df = df.set_index(["key1", "key2"])
df2 = df2.set_index(["key1", "key2"])
然后
df.loc[:, "new_feature"] = df2['new_feature']