合并多个数据框熊猫

时间:2018-06-30 13:14:48

标签: python pandas merge

我尝试将多个新的dataFrame合并到一个主框架中。 假设主数据框:

      key1           key2
0   0.365803    0.259112
1   0.086869    0.589834
2   0.269619    0.183644
3   0.755826    0.045187
4   0.204009    0.669371

然后我尝试将以下两个数据集合并到主要数据集中,
新数据1:

        key1    key2    new feature
0   0.365803    0.259112    info1

新数据2:

        key1    key2    new feature
0   0.204009    0.669371    info2

预期结果:

       key1       key2  new feature
0   0.365803    0.259112    info1
1   0.776945    0.780978    NaN
2   0.275891    0.114998    NaN
3   0.667057    0.373029    NaN
4   0.204009    0.669371    info2

我尝试过的事情:

test = test.merge(data1, left_on=['key1', 'key2'], right_on=['key1', 'key2'], how='left')
test = test.merge(data2, left_on=['key1', 'key2'], right_on=['key1', 'key2'], how='left')

第一个效果很好,但第二个效果不好:

        key1    key2    new feature_x   new feature_y
0   0.365803    0.259112    info1      NaN
1   0.776945    0.780978    NaN        NaN
2   0.275891    0.114998    NaN        NaN
3   0.667057    0.373029    NaN        NaN
4   0.204009    0.669371    NaN       info2

感谢您的帮助!

3 个答案:

答案 0 :(得分:2)

首先appendconcat两个DataFrame在一起,然后merge

dat = pd.concat([data1, data2], ignore_index=True)

或者:

dat = data1.append(data2, ignore_index=True)

print (dat)
       key1      key2 new feature
0  0.365803  0.259112       info1
1  0.204009  0.669371       info2

#if same joined columns names better is only on parameter
df = test.merge(dat, on=['key1', 'key2'], how='left')

print (df)
       key1      key2 new feature
0  0.365803  0.259112       info1
1  0.086869  0.589834         NaN
2  0.269619  0.183644         NaN
3  0.755826  0.045187         NaN
4  0.204009  0.669371       info2

答案 1 :(得分:0)

您可以改用pd.DataFrame.update

# create new column and set index
res = test.assign(newfeature=None).set_index(['key1', 'key2'])

# update with new data sequentially
res.update(data1.set_index(['key1', 'key2']))
res.update(data2.set_index(['key1', 'key2']))

# reset index to recover columns
res = res.reset_index()

print(res)

       key1      key2 newfeature
0  0.365803  0.259112      info1
1  0.086869  0.589834       None
2  0.269619  0.183644       None
3  0.755826  0.045187       None
4  0.204009  0.669371      info2

答案 2 :(得分:0)

您还可以将数据帧设置为相同的索引,并使用简单的loc

df  = df.set_index(["key1", "key2"])
df2 = df2.set_index(["key1", "key2"])

然后

df.loc[:, "new_feature"] = df2['new_feature']