熊猫:如何合并不同的数据框?

时间:2018-06-30 10:17:58

标签: python pandas dataframe group-by

我有两个数据帧df1df2

第一个数据框包含人物姓名:

df1  NAME
0    Paul
1    Jack
2    Anna
3    Tom
4    Eva

,并附上每个人接收和支付的金额信息的名字。有些人不在df1中,例如Zack。有些人无法出现在列表中,例如Tom

df2  Receiver Payer Amount  
0     Paul    Jack   300 
1     Anna    Paul   600
2     Anna    Eva    100
3     Eva     Zack   400

我想创建一个数据框,其中包含每个人接收和支付的所有金额。所以:

df3  NAME   RECEIVED  PAYED
0    Paul     300      600
1    Jack      0       300
2    Anna     700       0
3    Tom      NaN      NaN
4    Eva      400      100  

1 个答案:

答案 0 :(得分:3)

使用:

df3 = (df1.join(df2.melt('Amount', value_name='NAME', var_name='type')
                   .groupby(['NAME','type'])['Amount']
                   .sum()
                   .unstack(fill_value=0), on='NAME'))
print (df3)
   NAME  Payer  Receiver
0  Paul  600.0     300.0
1  Jack  300.0       0.0
2  Anna    0.0     700.0
3   Tom    NaN       NaN
4   Eva  100.0     400.0

说明

  1. 首先通过melt重塑DataFrame
  2. 每个sumNAME总计type
  3. MultiIndex的第二级按列重塑unstack
  4. 最后join个到最后一个DataFrame

使用pivot_table的另一种解决方案:

df3 = (df1.join(df2.melt('Amount', value_name='NAME', var_name='type')
                   .pivot_table(index='NAME', 
                                columns='type', 
                                values='Amount', 
                                aggfunc='sum',
                                fill_value=0), on='NAME'))
print (df3)
   NAME  Payer  Receiver
0  Paul  600.0     300.0
1  Jack  300.0       0.0
2  Anna    0.0     700.0
3   Tom    NaN       NaN
4   Eva  100.0     400.0

如有必要,最后rename列:

df3 = df3.rename(columns={'Receiver':'RECEIVED','Payer':'PAYED'})
print (df3)
   NAME  PAYED  RECEIVED
0  Paul  600.0     300.0
1  Jack  300.0       0.0
2  Anna    0.0     700.0
3   Tom    NaN       NaN
4   Eva  100.0     400.0

详细信息

print (df2.melt('Amount', value_name='NAME', var_name='type'))

   Amount      type  NAME
0     300  Receiver  Paul
1     600  Receiver  Anna
2     100  Receiver  Anna
3     400  Receiver   Eva
4     300     Payer  Jack
5     600     Payer  Paul
6     100     Payer   Eva
7     400     Payer  Zack