我有一个长度为4的输入向量,长度为2的输出向量的网络。我试图同时预测多个输入。如果我只想预测一个,则可以执行以下操作,并且可以正常工作:
in = numpy.array( [ [1,2,3,4] ] )
self.model.predict(in)
# prediction = [ [1,2] ]
但是,当我尝试传递多个输入时,我得到ValueError: Error when checking input: expected dense_1_input to have shape (4,) but got array with shape (1,)
in = numpy.array( [
[1,2,3,4],
[1,2,3,4]
]
)
#OR
in = numpy.array( [
[ [1,2,3,4] ],
[ [1,2,3,4] ]
]
)
self.model.predict(in)
#ERR
我在做什么错了?
编辑:
代码=
model = Sequential()
model.add(Dense(24, input_dim=4, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(4, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
print(batch_arr[:,3][0])
predictions = self.model.predict(batch_arr[:,3][0])
print(predictions)
print(batch_arr[:,3])
predictions = model.predict(batch_arr[:,3])
输出=
[[-0.00441936 -0.20398824 -0.08134908 0.09739554]]
[[ 0.01860509 -0.01136071]]
[array([[-0.00441936, -0.20398824, -0.08134908, 0.09739554]])
array([[-0.00517939, 0.38975933, -0.11951023, -0.9718224 ]])
array([[0.00272119, 0.0025476 , 0.002645 , 0.03973542]])
array([[-0.00421809, -0.01006362, -0.07795483, -0.16971247]])
array([[-0.00904593, 0.19332681, -0.10655871, -0.64757587]])
array([[ 0.00654432, 0.00347247, -0.15332555, -0.47302148]])
array([[-0.01921821, -0.17354519, -0.20207744, -0.58569029]])
array([[ 0.00661377, 0.20038962, -0.16278598, -0.80983334]])
array([[-0.00348096, 0.18171964, -0.07072813, -0.38913168]])
array([[-0.01268919, -0.00548544, -0.08286095, -0.27108632]])
array([[ 0.01077598, -0.19254374, -0.004982 , 0.33175341]])
array([[-4.37101750e-04, -5.68196965e-01, -1.99532537e-01,
1.10581883e-01]])
array([[ 0.00657382, -0.19263146, -0.00402872, 0.33368607]])
array([[ 0.00677398, 0.19760551, -0.00076944, -0.25153403]])
array([[ 0.00261579, 0.19642629, -0.13894668, -0.71894379]])
array([[-0.0221003 , 0.37477368, -0.03765055, -0.63564477]])
array([[-0.0110009 , 0.37599703, -0.0574645 , -0.66318148]])
array([[ 0.00277214, 0.19763152, 0.00343971, -0.25211181]])
array([[-9.31810654e-05, -2.06245307e-01, -8.09019674e-02,
1.47356796e-01]])
array([[ 0.00709025, -0.37636771, -0.19725323, -0.11396513]])
array([[ 0.00015344, -0.01233088, -0.07851076, -0.11956039]])
array([[ 0.01077811, -0.18439307, -0.19043179, -0.34107231]])
array([[-0.01460483, 0.18019651, -0.05036345, -0.35505252]])
array([[-0.0127989 , 0.19071515, -0.08828268, -0.58871071]])
array([[ 0.01072609, 0.00249456, -0.00580012, 0.0409061 ]])
array([[ 0.01062156, 0.00782762, -0.17898265, -0.57245695]])
array([[-0.01180104, -0.37085843, -0.1973209 , -0.23782701]])
array([[-0.00849912, -0.00780031, -0.07940117, -0.21980343]])
array([[ 0.00672477, 0.00246062, -0.00160252, 0.04165408]])
array([[-0.02268911, -0.36534914, -0.21379125, -0.36284594]])
array([[-0.00865513, -0.20170279, -0.08379724, 0.0468145 ]])
array([[-0.0256848 , 0.17922475, -0.03098346, -0.33335449]])]
#ERR
编辑:当我打印出batch_arr[:,3]
的形状时,得到的是(32,)
,而不是我所期望的(32,4)
。因此,我猜想numpy数组不知道其内部数组的形状。有一种简单的方法可以解决此问题吗?这可能是问题的根源
答案 0 :(得分:1)
问题是我创建numpy数组的方式。我用可变大小的索引创建了它,因此它不知道它的形状(32,4),只是它是(32,)。重新格式化逻辑以确保数组从开始就始终是一个设置的宽度,从而使数组可以为(32,4),从而可以进行预测。