我正在尝试根据R Bloggers的博客进行一些时间序列预测。 Time Series Forecasting using keras
这是我尝试使用的代码。
# Core Tidyverse
library(tidyverse)
library(glue)
library(forcats)
library(dplyr)
# Time Series
library(timetk)
library(tidyquant)
library(tibbletime)
library(stats)
# Visualization
library(cowplot)
# Preprocessing
library(recipes)
# Sampling / Accuracy
library(rsample)
library(yardstick)
# Modeling
library(keras)
library(tfruns)
#reading excel file
library("readxl")
incoming_volume <- read_excel(file.choose())
volume <- incoming_volume %>%
tk_tbl() %>%
mutate(index = as_date(index)) %>%
as_time(index = index)
p1 <- volume %>%
ggplot(aes(index, value)) +
geom_point(color = palette_light()[[1]], alpha = 0.5) +
theme_tq() +
labs(
title = "From July 2011 to May 2018 "
)
p2 <- volume %>%
filter_time("start" ~ "2011") %>%
ggplot(aes(index, value)) +
geom_line(color = palette_light()[[1]], alpha = 0.5) +su
geom_point(color = palette_light()[[1]]) +
geom_smooth(method = "loess", span = 0.2, se = FALSE) +
theme_tq() +
labs(
title = "2011 to 2018 (Zoomed In To Show Changes over the Year)",
caption = "Incoming Volume"
)
我收到一条错误消息,指出找不到filter_time函数。 我也尝试过time_filter。我遇到了同样的错误。
如何避免此错误。
关于, 仁。
答案 0 :(得分:0)
您可以通过以下方式更改“ filter_time”:
require(lubridate)
p2 <- volume %>%
filter(year(as.Date(index)) > 2011)