我想创建一个使用df和col并返回带有法线曲线和一些标签的直方图的函数。我认为可以使用和定制的东西适合将来的数据(将感谢您提出的一些建议,以使其更具可定制性)。这是为kaggle泰坦尼克号训练集制作的,如果需要,请从here下载。此功能适用于没有NaN
值的列。 Age
列有NaN
,我认为这是引发错误的原因。我尝试使用Error when plotting DataFrame containing NaN with Pandas 0.12.0 and Matplotlib 1.3.1 on Python 3.3.2来忽略NaN
,其中一种解决方案建议使用subplot
,但这对我不起作用。可接受的解决方案正在降级matplotlib
(我的版本是'2.1.2',python是3.6.4)。 pylab histogram get rid of nan使用了一种有趣的方法,我无法将其应用于我的情况。如何删除NaN
?此功能可自定义吗?不是主要问题-我可以整齐地做诸如均值/标准差之类的事情,添加更多信息吗?
import numpy as np
import pandas as pd
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
mydf = pd.DataFrame(np.random.randint(0,100,size=(100, 4)), columns=list('ABCD'))
def df_col_hist (df,col, n_bins):
fig, ax = plt.subplots()
n, bins, patches = ax.hist(df[col], n_bins, normed=1)
y = mlab.normpdf(bins, df[col].mean(), df[col].std())
ax.plot(bins, y, '--')
ax.set_xlabel (df[col].name)
ax.set_ylabel('Probability density')
ax.set_title(f'Histogram of {df[col].name}: $\mu={df[col].mean()}$, $\sigma={df[col].std()}$')
fig.tight_layout()
plt.show()
df_col_hist (train_data, 'Fare', 100)
#Works Fine, Tidy little histogram.
df_col_hist (train_data, 'Age', 100)
#ValueError: max must be larger than min in range parameter.
..\Anaconda3\lib\site-packages\numpy\core\_methods.py:29: RuntimeWarning: invalid value encountered in reduce
return umr_minimum(a, axis, None, out, keepdims)
..\Anaconda3\lib\site-packages\numpy\core\_methods.py:26: RuntimeWarning: invalid value encountered in reduce
return umr_maximum(a, axis, None, out, keepdims)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-75-c81b76c1f28e> in <module>()
----> 1 df_col_hist (train_data, 'Age', 100)
<ipython-input-70-1cf1645db595> in df_col_hist(df, col, n_bins)
2
3 fig, ax = plt.subplots()
----> 4 n, bins, patches = ax.hist(df[col], n_bins, normed=1)
5
6 y = mlab.normpdf(bins, df[col].mean(), df[col].std())
~\Anaconda3\lib\site-packages\matplotlib\__init__.py in inner(ax, *args, **kwargs)
1715 warnings.warn(msg % (label_namer, func.__name__),
1716 RuntimeWarning, stacklevel=2)
-> 1717 return func(ax, *args, **kwargs)
1718 pre_doc = inner.__doc__
1719 if pre_doc is None:
~\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in hist(***failed resolving arguments***)
6163 # this will automatically overwrite bins,
6164 # so that each histogram uses the same bins
-> 6165 m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs)
6166 m = m.astype(float) # causes problems later if it's an int
6167 if mlast is None:
~\Anaconda3\lib\site-packages\numpy\lib\function_base.py in histogram(a, bins, range, normed, weights, density)
665 if first_edge > last_edge:
666 raise ValueError(
--> 667 'max must be larger than min in range parameter.')
668 if not np.all(np.isfinite([first_edge, last_edge])):
669 raise ValueError(
答案 0 :(得分:1)
您对normpdf
的调用是错误的,因为它期望将x值数组作为第一个参数,而不是箱数。但是无论如何,不推荐使用mlab.normpdf。
也就是说,我建议使用norm.pdf
中的scipy
:
from scipy.stats import norm
s = np.std(df[col])
m = df[col].mean()
x = np.linspace(m - 3*s, m + 3*s, 51)
y = norm.pdf(x, loc=m) # additionally there's a `scale` parameter for norming against whatever in y-direction
ax.plot(x, y, '--', label='probability density function')
PS:将nan
放到您拥有的熊猫数据框中
df[col].dropna()
即:
n, bins, patches = ax.hist(df[col].dropna(), n_bins, normed=1)