我的问题可能会引起一些混乱,因此请先参见说明。找出我的问题可能会有所帮助。我将在问题的末尾添加我的代码(也欢迎提供有关我的代码结构/实现的任何建议)。 感谢您的任何帮助!
我的问题:
如何在Flink Batch处理中定义多个接收器,而又不使其反复从一个源获取数据?
createCollectionEnvironment()
和getExecutionEnvironment()
有什么区别?我应该在本地环境中使用哪一个?
env.execute()
的用途是什么?我的代码将输出结果而无需使用此语句。如果我添加这句话,它将弹出一个异常:
-
Exception in thread "main" java.lang.RuntimeException: No new data sinks have been defined since the last execution. The last execution refers to the latest call to 'execute()', 'count()', 'collect()', or 'print()'.
at org.apache.flink.api.java.ExecutionEnvironment.createProgramPlan(ExecutionEnvironment.java:940)
at org.apache.flink.api.java.ExecutionEnvironment.createProgramPlan(ExecutionEnvironment.java:922)
at org.apache.flink.api.java.CollectionEnvironment.execute(CollectionEnvironment.java:34)
at org.apache.flink.api.java.ExecutionEnvironment.execute(ExecutionEnvironment.java:816)
at MainClass.main(MainClass.java:114)
说明: 编程新手。最近,我需要使用Flink Batch处理来处理一些数据(分组数据,计算标准偏差等)。 但是我到了要输出两个DataSet的地步。 结构是这样的
从源(数据库)->数据集1(使用zipWithIndex()添加索引)->数据集2(在保留索引的同时进行一些计算)->数据集3
首先我输出DataSet 2
,索引例如从1到10000;
然后我输出DataSet 3
,尽管我没有更改任何函数中的值,但索引从10001变为20000。
我的猜测是输出DataSet 3
而不是使用
先前计算的DataSet 2
是从再次从数据库获取数据开始,然后执行计算。
通过使用ZipWithIndex()
函数,它不仅会给出错误的索引号,还会增加与db的连接。
我猜这与执行环境有关,就像我使用
ExecutionEnvironment env = ExecutionEnvironment.createCollectionsEnvironment();
将给出“错误的”索引号(10001-20000) 和
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
将给出正确的索引号(1-10000) 数据库连接所花费的时间和数量不同,并且打印顺序将颠倒。
操作系统,数据库,其他环境详细信息和版本: IntelliJ IDEA 2017.3.5(社区版) 内部版本#IC-173.4674.33,建于2018年3月6日 JRE:1.8.0_152-release-1024-b15 amd64 JVM:JetBrains s.r.o的OpenJDK 64位服务器VM Windows 10 10.0
我的测试代码(Java):
public static void main(String [] args)引发异常{ ExecutionEnvironment env = ExecutionEnvironment.createCollectionsEnvironment();
//Table is used to calculate the standard deviation as I figured that there is no such calculation in DataSet.
BatchTableEnvironment tableEnvironment = TableEnvironment.getTableEnvironment(env);
//Get Data from a mySql database
DataSet<Row> dbData =
env.createInput(
JDBCInputFormat.buildJDBCInputFormat()
.setDrivername("com.mysql.cj.jdbc.Driver")
.setDBUrl($database_url)
.setQuery("select value from $table_name where id =33")
.setUsername("username")
.setPassword("password")
.setRowTypeInfo(new RowTypeInfo(BasicTypeInfo.DOUBLE_TYPE_INFO))
.finish()
);
// Add index for assigning group (group capacity is 5)
DataSet<Tuple2<Long, Row>> indexedData = DataSetUtils.zipWithIndex(dbData);
// Replace index(long) with group number(int), and convert Row to double at the same time
DataSet<Tuple2<Integer, Double>> rawData = indexedData.flatMap(new GroupAssigner());
//Using groupBy() to combine individual data of each group into a list, while calculating the mean and range in each group
//put them into a POJO named GroupDataClass
DataSet<GroupDataClass> groupDS = rawData.groupBy("f0").combineGroup(new GroupCombineFunction<Tuple2<Integer, Double>, GroupDataClass>() {
@Override
public void combine(Iterable<Tuple2<Integer, Double>> iterable, Collector<GroupDataClass> collector) {
Iterator<Tuple2<Integer, Double>> it = iterable.iterator();
Tuple2<Integer, Double> var1 = it.next();
int groupNum = var1.f0;
// Using max and min to calculate range, using i and sum to calculate mean
double max = var1.f1;
double min = max;
double sum = 0;
int i = 1;
// The list is to store individual value
List<Double> list = new ArrayList<>();
list.add(max);
while (it.hasNext())
{
double next = it.next().f1;
sum += next;
i++;
max = next > max ? next : max;
min = next < min ? next : min;
list.add(next);
}
//Store group number, mean, range, and 5 individual values within the group
collector.collect(new GroupDataClass(groupNum, sum / i, max - min, list));
}
});
//print because if no sink is created, Flink will not even perform the calculation.
groupDS.print();
// Get the max group number and range in each group to calculate average range
// if group number start with 1 then the maximum of group number equals to the number of group
// However, because this is the second sink, data will flow from source again, which will double the group number
DataSet<Tuple2<Integer, Double>> rangeDS = groupDS.map(new MapFunction<GroupDataClass, Tuple2<Integer, Double>>() {
@Override
public Tuple2<Integer, Double> map(GroupDataClass in) {
return new Tuple2<>(in.groupNum, in.range);
}
}).max(0).andSum(1);
// collect and print as if no sink is created, Flink will not even perform the calculation.
Tuple2<Integer, Double> rangeTuple = rangeDS.collect().get(0);
double range = rangeTuple.f1/ rangeTuple.f0;
System.out.println("range = " + range);
}
public static class GroupAssigner implements FlatMapFunction<Tuple2<Long, Row>, Tuple2<Integer, Double>> {
@Override
public void flatMap(Tuple2<Long, Row> input, Collector<Tuple2<Integer, Double>> out) {
// index 1-5 will be assigned to group 1, index 6-10 will be assigned to group 2, etc.
int n = new Long(input.f0 / 5).intValue() + 1;
out.collect(new Tuple2<>(n, (Double) input.f1.getField(0)));
}
}
答案 0 :(得分:1)
1)可以将一个源连接到多个接收器,该源仅执行一次,并且将记录广播到多个接收器。看到这个问题Can Flink write results into multiple files (like Hadoop's MultipleOutputFormat)?
2)getExecutionEnvironment
是您要执行工作时获取环境的正确方法。 createCollectionEnvironment
是一个很好的测试环境。参见documentation
3)异常错误消息非常清楚:如果您调用print或collection,则将执行数据流。所以您必须选择: