我正尝试将行添加到我的pandas数据框中,如下所示:
import pandas as pd
import datetime as dt
d={'datetime':[dt.datetime(2018,3,1,0,0),dt.datetime(2018,3,1,0,10),dt.datetime(2018,3,1,0,40)],
'value':[4.,5.,1.]}
df=pd.DataFrame(d)
哪个输出:
datetime value
0 2018-03-01 00:00:00 4.0
1 2018-03-01 00:10:00 5.0
2 2018-03-01 00:40:00 1.0
我想做的是添加从00:00:00到00:40:00的行,以每5分钟显示一次。我想要的输出看起来像这样:
datetime value
0 2018-03-01 00:00:00 4.0
1 2018-03-01 00:05:00 NaN
2 2018-03-01 00:10:00 5.0
3 2018-03-01 00:15:00 NaN
4 2018-03-01 00:20:00 NaN
5 2018-03-01 00:25:00 NaN
6 2018-03-01 00:30:00 NaN
7 2018-03-01 00:35:00 NaN
8 2018-03-01 00:40:00 1.0
我怎么到达那里?
答案 0 :(得分:1)
您可以使用pd.DataFrame.resample
:
df = df.resample('5Min', on='datetime').first()\
.drop('datetime', 1).reset_index()
print(df)
datetime value
0 2018-03-01 00:00:00 4.0
1 2018-03-01 00:05:00 NaN
2 2018-03-01 00:10:00 5.0
3 2018-03-01 00:15:00 NaN
4 2018-03-01 00:20:00 NaN
5 2018-03-01 00:25:00 NaN
6 2018-03-01 00:30:00 NaN
7 2018-03-01 00:35:00 NaN
8 2018-03-01 00:40:00 1.0
答案 1 :(得分:0)
首先,您可以创建一个包含最终日期时间索引的数据框,然后影响第二个:
df1 = pd.DataFrame({'value': np.nan} ,index=pd.date_range('2018-03-01 00:00:00',
periods=9, freq='5min'))
print(df)
#Output :
value
2018-03-01 00:00:00 NaN
2018-03-01 00:05:00 NaN
2018-03-01 00:10:00 NaN
2018-03-01 00:15:00 NaN
2018-03-01 00:20:00 NaN
2018-03-01 00:25:00 NaN
2018-03-01 00:30:00 NaN
2018-03-01 00:35:00 NaN
2018-03-01 00:40:00 NaN
现在,假设您的数据框是第二个,您可以将其添加到上面的代码中:
d={'datetime':
[dt.datetime(2018,3,1,0,0),dt.datetime(2018,3,1,0,10),dt.datetime(2018,3,1,0,40)],
'value':[4.,5.,1.]}
df2=pd.DataFrame(d)
df2.datetime = pd.to_datetime(df2.datetime)
df2.set_index('datetime',inplace=True)
print(df2)
#Output
value
datetime
2018-03-01 00:00:00 4.0
2018-03-01 00:10:00 5.0
2018-03-01 00:40:00 1.0
最后:
df1.value = df2.value
print(df1)
#output
value
2018-03-01 00:00:00 4.0
2018-03-01 00:05:00 NaN
2018-03-01 00:10:00 5.0
2018-03-01 00:15:00 NaN
2018-03-01 00:20:00 NaN
2018-03-01 00:25:00 NaN
2018-03-01 00:30:00 NaN
2018-03-01 00:35:00 NaN
2018-03-01 00:40:00 1.0