您好,我正在尝试将X和Y坐标列表转换为行。我想通过groupby
的ID以及时间来映射此数据。只要我grouby
一列,我的代码就会成功执行,但是两列是我遇到错误的地方。我引用了此question。
以下是一些示例数据:
ID X Y Hour
1 -87.78976 41.97658 16
1 -87.66991 41.92355 16
1 -87.59887 41.708447 17
2 -87.73956 41.876827 16
2 -87.68161 41.79886 16
2 -87.5999 41.7083 16
3 -87.59918 41.708485 17
3 -87.59857 41.708393 17
3 -87.64391 41.675133 17
这是我的代码:
df = pd.read_csv("snow_gps.csv", sep=';')
#zip the coordinates into a point object and convert to a GeoData Frame
geometry = [Point(xy) for xy in zip(df.X, df.Y)]
geo_df = GeoDataFrame(df, geometry=geometry)
# aggregate these points with the GrouBy
geo_df = geo_df.groupby(['track_seg_point_id', 'Hour'])['geometry'].apply(lambda x: LineString(x.tolist()))
geo_df = GeoDataFrame(geo_df, geometry='geometry')
这是错误:ValueError:LineStrings必须至少包含2个坐标元组
这是我想要得到的最终结果:
ID Hour geometry
1 16 LINESTRING (-87.78976 41.97658, -87.66991 41.9...
1 17 LINESTRING (-87.78964000000001 41.976634999999...
1 18 LINESTRING (-87.78958 41.97663499999999, -87.6...
2 16 LINESTRING (-87.78958 41.976612, -87.669785 41...
2 17 LINESTRING (-87.78958 41.976624, -87.66978 41....
3 16 LINESTRING (-87.78958 41.97666, -87.6695199999...
3 17 LINESTRING (-87.78954 41.976665, -87.66927 41....
对于如何对多个参数进行分组,请提供任何建议或想法。
答案 0 :(得分:1)
您的代码很好,问题出在您的数据上。
您可以看到,如果按ID和Hour分组,则只有1个点以ID 1和小时17分组。LineString必须包含1个或多个Point(必须至少包含1个Point) 2个坐标元组)。我在您的样本数据中添加了另一点:
ID X Y Hour
1 -87.78976 41.97658 16
1 -87.66991 41.92355 16
1 -87.59887 41.708447 17
1 -87.48234 41.677342 17
2 -87.73956 41.876827 16
2 -87.68161 41.79886 16
2 -87.5999 41.7083 16
3 -87.59918 41.708485 17
3 -87.59857 41.708393 17
3 -87.64391 41.675133 17
并且您将在下面的代码中看到与您的代码几乎相同的
import pandas as pd
import geopandas as gpd
from shapely.geometry import Point, LineString, shape
df = pd.read_csv("snow_gps.csv", sep='\s*,\s*')
#zip the coordinates into a point object and convert to a GeoData Frame
geometry = [Point(xy) for xy in zip(df.X, df.Y)]
geo_df = gpd.GeoDataFrame(df, geometry=geometry)
geo_df2 = geo_df.groupby(['ID', 'Hour'])['geometry'].apply(lambda x: LineString(x.tolist()))
geo_df2 = gpd.GeoDataFrame(geo_df2, geometry='geometry')