我有
id_1 id_2 name count total
1 001 111 a 15
2 001 111 b 3
3 001 111 sum 28 28
4 002 111 a 7
5 002 111 b 33
6 002 111 sum 48 48
我希望共享id_1和id_2的行共享总数,例如
id_1 id_2 name count total
1 001 111 a 15 28
2 001 111 b 3 28
3 001 111 sum 28 28
4 002 111 a 7 48
5 002 111 b 33 48
6 002 111 sum 48 48
答案 0 :(得分:3)
我们可以使用lst1, lst2 = (sorted(i, key=lambda x: x['name']) for i in [lst1, lst2])
中的fill
。
tidyr
数据
library(tidyr)
dat2 <- dat %>% fill(total, .direction = "up")
dat2
# id_1 id_2 name count total
# 1 1 111 a 15 28
# 2 1 111 b 3 28
# 3 1 111 sum 28 28
# 4 2 111 a 7 48
# 5 2 111 b 33 48
# 6 2 111 sum 48 48
答案 1 :(得分:1)
考虑基础R的ave
计算组max
( na.rm 处理NA
):
df$total <- ave(df$total, df$id_1, df$_id_2, FUN=function(i) max(i, na.rm=na.omit))
df
# id_1 id_2 name count total
# 1 1 111 a 15 28
# 2 1 111 b 3 28
# 3 1 111 sum 28 28
# 4 2 111 a 7 48
# 5 2 111 b 33 48
# 6 2 111 sum 48 48
答案 2 :(得分:1)
使用zoo
和data.table
:
df <- read.table(text = "id_1 id_2 name count total
001 111 a 15 NA
001 111 b 3 NA
001 111 sum 28 28
002 111 a 7 NA
002 111 b 33 NA
002 111 sum 48 48",
header = TRUE, stringsAsFactors = FALSE)# create data
library(zoo)# load packages
library(data.table)
setDT(df)[, total := na.locf(na.locf(total, na.rm=FALSE), na.rm=FALSE, fromLast=TRUE), by = c("id_1", "id_2")]# convert df to data.table and carry forward and backward total by ids
输出:
id_1 id_2 name count total
1: 1 111 a 15 28
2: 1 111 b 3 28
3: 1 111 sum 28 28
4: 2 111 a 7 48
5: 2 111 b 33 48
6: 2 111 sum 48 48
答案 3 :(得分:1)
使用常规dplyr方法的简单方法:
dat %>% group_by(id_1, id_2) %>% mutate(total=count[name == "sum"])
或者:
dat %>% group_by(id_1, id_2) %>% mutate(total=na.omit(total)[1])
id_1 id_2 name count total
<int> <int> <chr> <int> <int>
1 1 111 a 15 28
2 1 111 b 3 28
3 1 111 sum 28 28
4 2 111 a 7 48
5 2 111 b 33 48
6 2 111 sum 48 48